A unified interpretation of high-temperature pore size expansion processes in MCM-41 mesoporous silicas

被引:107
作者
Kruk, M
Jaroniec, M [1 ]
Sayari, A
机构
[1] Kent State Univ, Dept Chem, Kent, OH 44242 USA
[2] Univ Laval, Dept Chem Engn, Ste Foy, PQ G1K 7P4, Canada
[3] Univ Laval, CERPIC, Ste Foy, PQ G1K 7P4, Canada
关键词
D O I
10.1021/jp9844258
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A unified interpretation is, presented for high-temperature (ca. 423 K) unit-cell enlargement of MCM-41 synthesized in the presence of cetyltrimethylammonium (CTMA(+)) surfactants without auxiliary organics. Such processes during postsynthesis hydrothermal treatments and direct syntheses were reported by several research groups to afford large-unit-cell (d spacing up to 7 nm) and large-pore (up to 7 nn) MCM-41 materials, but their structures were claimed to be different and the proposed mechanisms of the processes were not consistent with each other. The current study demonstrates significant structural similarities of large-pore MCM-41 materials-prepared using direct syntheses and postsynthesis treatments, reveals the common mechanism of their formation, and discusses its implications for preparation of large-pore materials, including new synthesis procedures. The proposed comprehensive description of the mechanism of the unit-cell-enlargement processes:involves the in situ generation of N,N-dimethylhexadecylamine (DMHA) and its swelling action as-a driving force of the pore size enlargement. The swelling properties of DMHA were confirmed by a successful synthesis of large-pore MCM-41 in mild conditions in the presence of DMHA and preparation of silicas: with pore sizes up to 11 nm and extremely large-pore volumes up to 2.4 cm(3)/g via restructuring of 3.5 nm MCM-41 in aqueous emulsions of long-chain amines (dimethyldecylamine or DMHA). The neutral amine is formed during the high-temperature processes-as a result of decomposition of CTMA(+) cations, which is likely to be accompanied by migration of tetramethylammonium cations (TMA(+)) to the silica-surfactant interface or is possibly related with replacement of CTMA(+) by TMA(+) at the interface. The reasons for the pore volume increase and surface area decrease during die pore size enlargement are discussed. Moreover, it is suggested that the unit-cell expansion-in the direction perpendicular to the pore channels is accompanied by. shrinkage of the structure in the direction parallel to the channels.
引用
收藏
页码:4590 / 4598
页数:9
相关论文
共 65 条
[31]   ORDERED MESOPOROUS MOLECULAR-SIEVES SYNTHESIZED BY A LIQUID-CRYSTAL TEMPLATE MECHANISM [J].
KRESGE, CT ;
LEONOWICZ, ME ;
ROTH, WJ ;
VARTULI, JC ;
BECK, JS .
NATURE, 1992, 359 (6397) :710-712
[32]   Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements [J].
Kruk, M ;
Jaroniec, M ;
Sayari, A .
LANGMUIR, 1997, 13 (23) :6267-6273
[33]  
Kruk M, 1999, SURF SCI SERIES, V78, P443
[34]   Monitoring of the structure of siliceous mesoporous molecular sieves tailored using different synthesis conditions [J].
Kruk, M ;
Jaroniec, M ;
Ryoo, R ;
Kim, JM .
MICROPOROUS MATERIALS, 1997, 12 (1-3) :93-106
[35]   Adsorption study of surface and structural properties of MCM-41 materials of different pore sizes [J].
Kruk, M ;
Jaroniec, M ;
Sayari, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (04) :583-589
[36]   Relations between pore structure parameters and their implications for characterization of MCM-41 using gas adsorption and X-ray diffraction [J].
Kruk, M ;
Jaroniec, M ;
Sayari, A .
CHEMISTRY OF MATERIALS, 1999, 11 (02) :492-500
[37]   Influence of hydrothermal restructuring conditions on structural properties of mesoporous molecular sieves [J].
Kruk, M ;
Jaroniec, M ;
Sayari, A .
MICROPOROUS AND MESOPOROUS MATERIALS, 1999, 27 (2-3) :217-229
[38]  
KRUK M, 1998, THESIS KENT STATE U
[39]  
Liu J, 1998, ADV MATER, V10, P161, DOI 10.1002/(SICI)1521-4095(199801)10:2<161::AID-ADMA161>3.0.CO
[40]  
2-Q