Electrochemical impedance spectroscopy characterization of nanoporous alumina dengue virus biosensor

被引:67
作者
Binh Thi Thanh Nguyen [1 ]
Peh, Alister En Kai [1 ]
Chee, Celine Yue Ling [1 ]
Fink, Katja [2 ]
Chow, Vincent T. K. [3 ]
Ng, Mary M. L. [3 ]
Toh, Chee-Seng [1 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Chem & Biol Chem, Singapore 637371, Singapore
[2] Agcy Sci Technol & Res, Singapore Immunol Network, Singapore, Singapore
[3] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Microbiol, Singapore 117595, Singapore
关键词
Dengue; Virus; Nanoporous membrane; Diagnostics; Sensor; OXIDE; FILMS; NANOBIOSENSOR; MEMBRANES;
D O I
10.1016/j.bioelechem.2012.04.006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Faradaic electrochemical impedance technique is employed to characterize the impedance change of a nanoporous alumina biosensor in response towards the specific binding of dengue serotype 2 (Denv2) viral particles to its serotype 2-specific immunoglobulin G antibody within the thin alumina layer. The optimal equivalent circuit model that matches the impedimetric responses of the sensor describes three distinct regions: the electrolyte solution (R-s), the porous alumina channels (including biomaterials) (Q(1), R-1) and the conductive electrode substrate layer (Q(2), R-2). Both channel resistance R-1 and capacitance Q(1) change in response to the increase of the Denv2 virus concentration. A linear relationship between R-1 and Denv2 concentration from 1 to 900 plaque forming unit per mL (pfu mL(-1)) can be derived using Langmuir-Freundlich isotherm model. At 1 pfu mL(-1) Denv2 concentration, R-1 can be distinguished from that of the cell culture control sample. Moreover, Q(1) doubles when Denv2 is added but remains unchanged in the presence of two other nonspecific viruses - West Nile virus and Chikungunya virus indicates biosensor specificity can be quantitatively measured using channel capacitance. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:15 / 21
页数:7
相关论文
共 30 条
[1]  
[Anonymous], 2001, ELECTROCHEMICAL METH
[2]  
Brett CMA, 1999, ELECTROANAL, V11, P1013, DOI 10.1002/(SICI)1521-4109(199910)11:14<1013::AID-ELAN1013>3.0.CO
[3]  
2-Y
[4]   Development of an electrochemical membrane-based nanobiosensor for ultrasensitive detection of dengue virus [J].
Cheng, Ming Soon ;
Ho, Jia Shin ;
Tan, Cheong Huat ;
Wong, Jeslyn Pei Sze ;
Ng, Lee Ching ;
Toh, Chee-Seng .
ANALYTICA CHIMICA ACTA, 2012, 725 :74-80
[5]   Membrane-Based Electrochemical Nanobiosensor for Escherichia coli Detection and Analysis of Cells Viability [J].
Cheng, Ming Soon ;
Lau, Suk Hiang ;
Chow, Vincent T. ;
Toh, Chee-Seng .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (15) :6453-6459
[6]   A Nanochannel/Nanoparticle-Based Filtering and Sensing Platform for Direct Detection of a Cancer Biomarker in Blood [J].
de la Escosura-Muniz, Alfredo ;
Merkoci, Arben .
SMALL, 2011, 7 (05) :675-682
[7]   Characterization of complex anodic alumina films by electrochemical impedance spectroscopy [J].
Girginov, Assen ;
Popova, Angelina ;
Kanazirski, Ivan ;
Zahariev, Alexander .
THIN SOLID FILMS, 2006, 515 (04) :1548-1551
[8]   Characterization of porous aluminium oxide films from ac impedance measurements [J].
González, JA ;
López, V ;
Bautista, A ;
Otero, E ;
Nóvoa, XR .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1999, 29 (02) :229-238
[9]   Dengue and dengue hemorrhagic fever [J].
Gubler, DJ .
CLINICAL MICROBIOLOGY REVIEWS, 1998, 11 (03) :480-+
[10]   Solid-state nanopore technologies for nanopore-based DNA analysis [J].
Healy, Ken ;
Schiedt, Birgitta ;
Morrison, Alan P. .
NANOMEDICINE, 2007, 2 (06) :875-897