Impact of site dilution and agent diffusion on the critical behavior of the majority-vote model

被引:21
作者
Crokidakis, Nuno [1 ,2 ,3 ]
Castro de Oliveira, Paulo Murilo [2 ,3 ]
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Dept Fis, Rio De Janeiro, Brazil
[2] Univ Fed Fluminense, Inst Fis, BR-24020 Niteroi, RJ, Brazil
[3] Natl Inst Sci & Technol Complex Syst, Rio De Janeiro, Brazil
来源
PHYSICAL REVIEW E | 2012年 / 85卷 / 04期
关键词
SZNAJD MODEL; OPINION; SOCIOPHYSICS; EVOLUTION; DYNAMICS; MOBILITY;
D O I
10.1103/PhysRevE.85.041147
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this work we study a modified version of the majority-vote model with noise. In particular, we consider a random diluted square lattice wherein a site is empty with a probability r. In order to analyze the critical behavior of the model, we perform Monte Carlo simulations on lattices with linear sizes up to L = 140. By means of a finite-size scaling analysis we estimate the critical noises q(c) and the critical ratios beta/nu, gamma/nu, and 1/nu for some values of the probability r. Our results suggest that the critical exponents are different from those of the original model (r = 0), but they are r independent (r > 0). In addition, if we consider that agents can diffuse through the lattice, the exponents remain the same, suggesting a new universality class for the majority-vote model with noise. Based on the numerical data, we may conjecture that the values of the exponents in this universality class are beta similar to 0.45, gamma similar to 1.1, and nu similar to 1.0, which satisfy the scaling relation 2 beta + gamma = d nu = 2.
引用
收藏
页数:6
相关论文
共 36 条
[1]   Evolution of the social network of scientific collaborations [J].
Barabási, AL ;
Jeong, H ;
Néda, Z ;
Ravasz, E ;
Schubert, A ;
Vicsek, T .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 311 (3-4) :590-614
[2]   Damage spreading, coarsening dynamics and distribution of political votes in Sznajd model on square lattice [J].
Bernardes, AT ;
Costa, UMS ;
Araujo, AD ;
Stauffer, D .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2001, 12 (02) :159-167
[3]   FINITE SIZE SCALING ANALYSIS OF ISING-MODEL BLOCK DISTRIBUTION-FUNCTIONS [J].
BINDER, K .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 43 (02) :119-140
[4]   Small-world effects in the majority-vote model [J].
Campos, PRA ;
de Oliveira, VM ;
Moreira, FGB .
PHYSICAL REVIEW E, 2003, 67 (02) :4
[5]   Statistical physics of social dynamics [J].
Castellano, Claudio ;
Fortunato, Santo ;
Loreto, Vittorio .
REVIEWS OF MODERN PHYSICS, 2009, 81 (02) :591-646
[6]  
CLIFFORD P, 1973, BIOMETRIKA, V60, P581, DOI 10.2307/2335008
[7]   Competition Among Reputations in the 2D Sznajd Model: Spontaneous Emergence of Democratic States [J].
Crokidakis, Nuno ;
Forgerini, Fabricio L. .
BRAZILIAN JOURNAL OF PHYSICS, 2012, 42 (1-2) :125-131
[8]   Effects of mass media on opinion spreading in the Sznajd sociophysics model [J].
Crokidakis, Nuno .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (04) :1729-1734
[9]   The Sznajd model with limited persuasion: competition between high-reputation and hesitant agents [J].
Crokidakis, Nuno ;
Castro de Oliveira, Paulo Murilo .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
[10]   Consequence of reputation in the Sznajd consensus model [J].
Crokidakis, Nuno ;
Forgerini, Fabricio L. .
PHYSICS LETTERS A, 2010, 374 (34) :3380-3383