Severe Renal Mass Reduction Impairs Recovery and Promotes Fibrosis after AKI

被引:69
作者
Polichnowski, Aaron J. [1 ,2 ]
Lan, Rongpei [3 ]
Geng, Hui [3 ]
Griffin, Karen A. [1 ,2 ]
Venkatachalam, Manjeri A. [3 ]
Bidani, Anil K. [1 ,2 ]
机构
[1] Loyola Univ, Dept Med, Div Nephrol & Hypertens, Maywood, IL 60153 USA
[2] Hines Vet Affaris Hosp, Maywood, IL USA
[3] Univ Texas Hlth Sci Ctr San Antonio, Dept Pathol, San Antonio, TX 78229 USA
来源
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY | 2014年 / 25卷 / 07期
关键词
ACUTE KIDNEY INJURY; ISCHEMIA-REPERFUSION INJURY; ENDOTHELIAL GROWTH-FACTOR; TGF-BETA; INTERSTITIAL FIBROSIS; EPITHELIAL-CELLS; DISEASE; FAILURE; RISK; RAT;
D O I
10.1681/ASN.2013040359
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Preexisting CKD may affect the severity of and/or recovery from AKI. We assessed the impact of prior graded normotensive renal mass reduction on ischemia-reperfusion-induced AKI. Rats underwent 40 minutes of ischemia 2 weeks after right uninephrectomy and surgical excision of both poles of the left kidney (75% reduction of renal mass), right uninephrectomy (50% reduction of renal mass), or sham reduction of renal mass. The severity of AKI was comparable among groups, which was reflected by similarly increased serum creatinine (S-Cr; approximately 4.5 mg/dl) at 2 days, tubule necrosis at 3 days, and vimentin-expressing regenerating tubules at 7 days postischemia-reperfusion. However, S-Cr remained elevated compared with preischemia-reperfusion values, and more tubules failed to differentiate during late recovery 4 weeks after ischemia-reperfusion in rats with 75% renal mass reduction relative to other groups. Tubules that failed to differentiate continued to produce vimentin, exhibited vicarious proliferative signaling, and expressed less vascular endothelial growth factor but more profibrotic peptides. The disproportionate failure of regenerating tubules to redifferentiate in rats with 75% renal mass reduction associated with more severe capillary rarefaction and greater tubulointerstitial fibrosis. Furthermore, initially normotensive rats with 75% renal mass reduction developed hypertension and proteinuria, 2-4 weeks postischemia-reperfusion. In summary, severe (>50%) renal mass reduction disproportionately compromised tubule repair, diminished capillary density, and promoted fibrosis with hypertension after ischemia-reperfusion-induced AKI in rats, suggesting that accelerated declines of renal function may occur after AKI in patients with preexisting CKD.
引用
收藏
页码:1496 / 1507
页数:12
相关论文
共 68 条
[1]   Renal ischemia reperfusion inhibits VEGF expression and induces ADAMTS-1, a novel VEGF inhibitor [J].
Basile, David P. ;
Fredrich, Katherine ;
Chelladurai, Bhadrani ;
Leonard, Ellen C. ;
Parrish, Alan R. .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2008, 294 (04) :F928-F936
[2]   Impaired endothelial proliferation and mesenchymal transition contribute to vascular rarefaction following acute kidney injury [J].
Basile, David P. ;
Friedrich, Jessica L. ;
Spahic, Jasmina ;
Knipe, Nicole ;
Mang, Henry ;
Leonard, Ellen C. ;
Changizi-Ashtiyani, Saeed ;
Bacallao, Robert L. ;
Molitoris, Bruce A. ;
Sutton, Timothy A. .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2011, 300 (03) :F721-F733
[3]   Chronic renal hypoxia after acute ischemic injury: effects of L-arginine on hypoxia and secondary damage [J].
Basile, DP ;
Donohoe, DL ;
Roethe, K ;
Mattson, DL .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2003, 284 (02) :F338-F348
[4]   Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function [J].
Basile, DP ;
Donohoe, D ;
Roethe, K ;
Osborn, JL .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2001, 281 (05) :F887-F899
[5]   Pathophysiology of hypertensive renal damage - Implications for therapy [J].
Bidani, AK ;
Griffin, KA .
HYPERTENSION, 2004, 44 (05) :595-601
[6]   RENAL AUTOREGULATION AND VULNERABILITY TO HYPERTENSIVE INJURY IN REMNANT KIDNEY [J].
BIDANI, AK ;
SCHWARTZ, MM ;
LEWIS, EJ .
AMERICAN JOURNAL OF PHYSIOLOGY, 1987, 252 (06) :F1003-F1010
[7]   Cellular pathophysiology of ischemic acute kidney injury [J].
Bonventre, Joseph V. ;
Yang, Li .
JOURNAL OF CLINICAL INVESTIGATION, 2011, 121 (11) :4210-4221
[8]   Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure [J].
Bonventre, JV .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2003, 14 (06) :S55-S61
[9]   Recent advances in the pathophysiology of ischemic acute renal failure [J].
Bonventre, JV ;
Weinberg, JM .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2003, 14 (08) :2199-2210
[10]   Increased risk of death and de novo chronic kidney disease following reversible acute kidney injury [J].
Bucaloiu, Ion D. ;
Kirchner, H. Lester ;
Norfolk, Evan R. ;
Hartle, James E., II ;
Perkins, Robert M. .
KIDNEY INTERNATIONAL, 2012, 81 (05) :477-485