A computational study of global algorithms for linear bilevel programming

被引:11
作者
de Sabóia, CHM
Campêlo, M
Scheimberg, S
机构
[1] Univ Fed Rio de Janeiro, COPPE Sistemas, DCC IM, BR-21945970 Rio De Janeiro, Brazil
[2] Univ Fed Ceara, Dept Estatist & Mat Aplicada, BR-60455760 Fortaleza, Ceara, Brazil
关键词
bilevel linear programming; global optimization; branch-and-bound; exact penalty methods;
D O I
10.1023/B:NUMA.0000021760.62160.a4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze two global algorithms for solving the linear bilevel program (LBP) problem. The first one is a recent algorithm built on a new concept of equilibrium point and a modified version of the outer approximation method. The second one is an efficient branch-and-bound algorithm known in the literature. Based on computational results we propose some modifications in both algorithms to improve their computational performance. A significant number of experiments is carried out and a comparative study with the algorithms is presented. The modified procedures has better performance than the original versions.
引用
收藏
页码:155 / 173
页数:19
相关论文
共 22 条
[1]  
Amouzegar M, 1998, NONCON OPTIM ITS APP, V20, P251
[2]   Determining optimal pollution control policies: An application of bilevel programming [J].
Amouzegar, MA ;
Moshirvaziri, K .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1999, 119 (01) :100-120
[3]   A BRANCH AND BOUND ALGORITHM FOR THE BILEVEL PROGRAMMING PROBLEM [J].
BARD, JF ;
MOORE, JT .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1990, 11 (02) :281-292
[4]  
BAZARAA MS, 1990, LINEAR PROGRAMMING N
[6]   2-LEVEL LINEAR-PROGRAMMING [J].
BIALAS, WF ;
KARWAN, MH .
MANAGEMENT SCIENCE, 1984, 30 (08) :1004-1020
[7]   GENERATING LINEAR AND LINEAR-QUADRATIC BILEVEL PROGRAMMING-PROBLEMS [J].
CALAMAI, PH ;
VICENTE, LN .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (04) :770-782
[8]  
CAMPELO M, 1999, THESIS U FEDERAL RIO
[9]  
CAMPELO M, 2001, NONCONVEX OPTIMIZATI, V54, P269
[10]  
CANDLER W, 1982, COMPUT OPER RES, V9, P56