InGaAs/GaAsSb/InP terahertz quantum cascade lasers

被引:11
作者
Deutsch, Christoph [1 ,2 ]
Detz, Hermann [2 ,3 ]
Zederbauer, Tobias [2 ,3 ]
Krall, Michael [1 ,2 ]
Brandstetter, Martin [1 ,2 ]
Andrews, Aaron M. [2 ,3 ]
Klang, Pavel [2 ,3 ]
Schrenk, Werner [2 ,3 ]
Strasser, Gottfried [2 ,3 ]
Unterrainer, Karl [1 ,2 ]
机构
[1] Vienna Univ Technol, Photon Inst, A-1040 Vienna, Austria
[2] Vienna Univ Technol, Ctr Micro & Nanostruct, A-1040 Vienna, Austria
[3] Vienna Univ Technol, Inst Solid State Elect, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
Quantum cascade lasers; Terahertz generation; Novel material systems; Antimony materials; Transport in nanostructures; PERFORMANCE; BARRIER;
D O I
10.1007/s10762-013-9991-5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The development of In0.53Ga0.47As/GaAs0.51Sb0.49 terahertz quantum cascade lasers is reviewed, starting with the first demonstration, through growth direction dependent performance issues, to high performance devices. This InP-based material system is an attractive alternative to the almost exclusively used GaAs/AlxGa1-xAs. Devices achieve maximum operating temperatures of 142 K and exhibit broadband lasing over a range of 660 GHz. A special focus has to be put on the growth direction related interface asymmetry for this material system. Symmetric active region designs are an elegant technique to investigate such asymmetries. A significant impact on the device performance is observed and attributed to interface roughness scattering.
引用
收藏
页码:374 / 385
页数:12
相关论文
共 50 条
[1]   InGaAs-AlInAs/InP terahertz quantum cascade laser [J].
Ajili, L ;
Scalari, G ;
Hoyler, N ;
Giovannini, M ;
Faist, J .
APPLIED PHYSICS LETTERS, 2005, 87 (14) :1-3
[2]   Electrically driven nanopillars for THz quantum cascade lasers [J].
Amanti, M. I. ;
Bismuto, A. ;
Beck, M. ;
Isa, L. ;
Kumar, K. ;
Reimhult, E. ;
Faist, J. .
OPTICS EXPRESS, 2013, 21 (09) :10917-10923
[3]   Room temperature quantum cascade lasers with 27% wall plug efficiency [J].
Bai, Y. ;
Bandyopadhyay, N. ;
Tsao, S. ;
Slivken, S. ;
Razeghi, M. .
APPLIED PHYSICS LETTERS, 2011, 98 (18)
[4]  
Barbieri S, 2011, NAT PHOTONICS, V5, P378
[5]   Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K [J].
Belkin, Mikhail A. ;
Fan, Jonathan A. ;
Hormoz, Sahand ;
Capasso, Federico ;
Khanna, Suraj P. ;
Lachab, Mohamed ;
Davies, A. Giles ;
Linfield, Edmund H. .
OPTICS EXPRESS, 2008, 16 (05) :3242-3248
[6]   Monte Carlo study of GaN versus GaAs terahertz quantum cascade structures [J].
Bellotti, Enrico ;
Driscoll, Kristina ;
Moustakas, Theodore D. ;
Paiella, Roberto .
APPLIED PHYSICS LETTERS, 2008, 92 (10)
[7]   Influence of the material parameters on quantum cascade devices [J].
Benveniste, E. ;
Vasanelli, A. ;
Delteil, A. ;
Devenson, J. ;
Teissier, R. ;
Baranov, A. ;
Andrews, A. M. ;
Strasser, G. ;
Sagnes, I. ;
Sirtori, C. .
APPLIED PHYSICS LETTERS, 2008, 93 (13)
[8]   Influence of the facet type on the performance of terahertz quantum cascade lasers with double-metal waveguides [J].
Brandstetter, Martin ;
Krall, Michael ;
Deutsch, Christoph ;
Detz, Hermann ;
Andrews, Aaron M. ;
Schrenk, Werner ;
Strasser, Gottfried ;
Unterrainer, Karl .
APPLIED PHYSICS LETTERS, 2013, 102 (23)
[9]   Importance of electron-impurity scattering for electron transport in terahertz quantum-cascade lasers [J].
Callebaut, H ;
Kumar, S ;
Williams, BS ;
Hu, Q ;
Reno, JL .
APPLIED PHYSICS LETTERS, 2004, 84 (05) :645-647
[10]   Limiting Factors to the Temperature Performance of THz Quantum Cascade Lasers Based on the Resonant-Phonon Depopulation Scheme [J].
Chassagneux, Y. ;
Wang, Q. J. ;
Khanna, S. P. ;
Strupiechonski, E. ;
Coudevylle, J. -R. ;
Linfield, E. H. ;
Davies, A. G. ;
Capasso, F. ;
Belkin, M. A. ;
Colombelli, R. .
IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2012, 2 (01) :83-92