Fundamental issues in fluid modeling: Direct substitution and aliasing methods

被引:9
作者
Robson, R. E. [1 ]
Nicoletopoulos, P. [2 ]
Hildebrandt, M. [3 ]
White, R. D. [1 ]
机构
[1] James Cook Univ, Ctr Antimatter Matter Studies, Townsville, Qld 4811, Australia
[2] Univ Libre Brussels, Fac Sci, B-1050 Brussels, Belgium
[3] Paul Scherrer Inst, CH-5232 Villigen, Switzerland
基金
澳大利亚研究理事会;
关键词
CHARGED-PARTICLE TRANSPORT; MOMENTUM-TRANSFER THEORY; WIDE ENERGY-RANGE; CROSS-SECTIONS; ELECTRON-TRANSPORT; GLOW-DISCHARGES; GASEOUS-IONS; SWARM PARAMETERS; COEFFICIENTS; MOBILITY;
D O I
10.1063/1.4768421
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It is shown how the accuracy of fluid models of charged particles in gases can be improved significantly by direct substitution of swarm transport coefficient data, rather than cross sections, into the average collision terms. This direct substitution method emerges in a natural way for fluid formulations in which the role of the mean energy is transparent, whatever the mass of the charged particles in equation (ions or electrons), and requires no further approximations. The procedure is illustrated by numerical examples for electrons, including the operational window of E/N for an idealized Franck-Hertz experiment. Using the same fluid formulation, we develop an aliasing method to estimate otherwise unknown mobility data for one type of particle, from known mobility data for another type of particle. The method is illustrated for muons in hydrogen, using tabulated data for protons in the same gas. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4768421]
引用
收藏
页数:9
相关论文
共 51 条
[1]   Fluid modelling of the positive column of direct-current glow discharges [J].
Alves, Luis L. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2007, 16 (03) :557-569
[2]   Measurement of the muon capture rate in hydrogen gas and determination of the Proton's Pseudoscalar coupling gP [J].
Andreev, V. A. ;
Banks, T. I. ;
Case, T. A. ;
Chitwood, D. B. ;
Clayton, S. M. ;
Crowe, K. M. ;
Deutsch, J. ;
Egger, J. ;
Freedman, S. J. ;
Ganzha, V. A. ;
Gorringe, T. ;
Gray, F. E. ;
Hertzog, D. W. ;
Hildebrandt, M. ;
Kammel, P. ;
Kiburg, B. ;
Knaack, S. ;
Kravtsov, P. A. ;
Krivshich, A. G. ;
Lauss, B. ;
Lynch, K. L. ;
Maev, E. M. ;
Maev, O. E. ;
Mulhauser, F. ;
Oezben, C. S. ;
Petitjean, C. ;
Petrov, G. E. ;
Prieels, R. ;
Schapkin, G. N. ;
Semenchuk, G. G. ;
Soroka, M. A. ;
Tishchenko, V. ;
Vasilyev, A. A. ;
Vorobyov, A. A. ;
Vznuzdaev, M. E. ;
Winter, P. .
PHYSICAL REVIEW LETTERS, 2007, 99 (03)
[3]   CATHODE REGION OF A TRANSITORY DISCHARGE IN CO2 .1. THEORY OF THE CATHODE REGION [J].
BAYLE, P ;
VACQUIE, J ;
BAYLE, M .
PHYSICAL REVIEW A, 1986, 34 (01) :360-371
[4]   Measurement of electron swarm coefficients in C2F4-Xe and evidence of Penning ionization in C2F4-Ar [J].
Bekstein, A. ;
de Urquijo, J. ;
Hernandez-Avila, J. L. ;
Basurto, E. .
EUROPEAN PHYSICAL JOURNAL D, 2012, 66 (03)
[5]  
Blum Walter., 2010, Particle detection with Drift Chambers
[6]   Electron-molecule scattering cross-sections. I. Experimental techniques and data for diatomic molecules [J].
Brunger, MJ ;
Buckman, SJ .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 357 (3-5) :215-458
[7]  
Crompton RW, 1994, ADV ATOM MOL OPT <D>, V33, P97
[8]   Transport coefficients and cross sections for electrons in N2O and N2O/N2 mixtures [J].
Dupljanin, S. ;
de Urquijo, J. ;
Sasic, O. ;
Basurto, E. ;
Juarez, A. M. ;
Hernandez-Avila, J. L. ;
Dujko, S. ;
Petrovic, Z. Lj .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2010, 19 (02)
[9]  
Ellis H. W., 1978, Atomic Data and Nuclear Data Tables, V22, P179, DOI 10.1016/0092-640X(78)90014-1
[10]  
Ellis H. W., 1976, Atomic Data and Nuclear Data Tables, V17, P177, DOI 10.1016/0092-640X(76)90001-2