Multi-magnification Networks for Deformable Image Registration on Histopathology Images

被引:1
作者
Cetin, Oezdemir [1 ]
Shu, Yiran [1 ]
Flinner, Nadine [2 ]
Ziegler, Paul [2 ]
Wild, Peter [2 ]
Koeppl, Heinz [1 ]
机构
[1] Tech Univ Darmstadt, Dept Elect Engn & Informat Technol, Darmstadt, Germany
[2] Univ Hosp Frankfurt, Senckenberg Inst Pathol, Frankfurt, Germany
来源
BIOMEDICAL IMAGE REGISTRATION (WBIR 2022) | 2022年 / 13386卷
基金
欧洲研究理事会;
关键词
Histopathological image; Affine transformation; Non-rigid registration; Unsupervised learning; Multi-magnification network;
D O I
10.1007/978-3-031-11203-4_14
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present an end-to-end unsupervised deformable registration approach for high-resolution histopathology images with different stains. Our method comprises two sequential registration networks, where the local affine network can handle small deformations, and the non-rigid network is able to align texture details further. Both networks adopt the multi-magnification structure to improve registration accuracy. We train the proposed networks separately and evaluate them on the dataset provided by the University Hospital Frankfurt, which contains 41 multi-stained histopathology whole-slide images. By comparing with methods using the single-magnification structure, we confirm that the proposed multi-view architecture can significantly improve the performance of the local affine registration algorithm. Moreover, the proposed method achieves high registration accuracy of contents at the cell level and is potentially applicable to other medical image alignment tasks.
引用
收藏
页码:124 / 133
页数:10
相关论文
共 21 条
[1]  
Costin H, 2009, COMPUT SCI J MOLD, V17, P231
[2]   Unsupervised Learning for Fast Probabilistic Diffeomorphic Registration [J].
Dalca, Adrian V. ;
Balakrishnan, Guha ;
Guttag, John ;
Sabuncu, Mert R. .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT I, 2018, 11070 :729-738
[3]  
Feuerstein M, 2011, LECT NOTES COMPUT SC, V6892, P582, DOI 10.1007/978-3-642-23629-7_71
[4]   A unified approach to fast image registration and a new curvature based registration technique [J].
Fischer, B ;
Modersitzki, J .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 380 :107-124
[5]   Deep learning in medical image registration: a review [J].
Fu, Yabo ;
Lei, Yang ;
Wang, Tonghe ;
Curran, Walter J. ;
Liu, Tian ;
Yang, Xiaofeng .
PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (20)
[6]   Deep learning in medical image registration: a survey [J].
Haskins, Grant ;
Kruger, Uwe ;
Yan, Pingkun .
MACHINE VISION AND APPLICATIONS, 2020, 31 (01)
[7]   Deep Multi-Magnification Networks for multi-class breast cancer image segmentation [J].
Ho, David Joon ;
Yarlagadda, Dig V. K. ;
D'Alfonso, Timothy M. ;
Hanna, Matthew G. ;
Grabenstetter, Anne ;
Ntiamoah, Peter ;
Brogi, Edi ;
Tan, Lee K. ;
Fuchs, Thomas J. .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2021, 88
[8]   Patch-Based Nonlinear Image Registration for Gigapixel Whole Slide Images [J].
Lotz, J. ;
Olesch, J. ;
Mueller, B. ;
Polzin, T. ;
Galuschka, P. ;
Lotz, J. M. ;
Heldmann, S. ;
Laue, H. ;
Gonzalez-Vallinas, M. ;
Warth, A. ;
Lahrmann, B. ;
Grabe, N. ;
Sedlaczek, O. ;
Breuhahn, K. ;
Modersitzki, J. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2016, 63 (09) :1812-1819
[9]   Respiratory motion correction for free-breathing 3D abdominal MRI using CNN-based image registration: a feasibility study [J].
Lv, Jun ;
Yang, Ming ;
Zhang, Jue ;
Wang, Xiaoying .
BRITISH JOURNAL OF RADIOLOGY, 2018, 91 (1083)
[10]  
Modersitzki J, 2009, FUND ALGORITHMS, P1, DOI 10.1137/1.9780898718843