EXISTENCE OF SOLUTIONS FOR CONVEX SWEEPING PROCESSES IN p-UNIFORMLY SMOOTH AND q-UNIFORMLY CONVEX BANACH SPACES

被引:0
作者
Bounkhel, Messaoud [1 ]
机构
[1] King Saud Univ, Dept Math, Riyadh 11451, Saudi Arabia
关键词
Uniformly smooth and uniformly convex Banach spaces; state dependent sweeping process; generalized projection; duality mapping;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show the existence of at least one Lipschitz solution for extensions of convex sweeping processes in reflexive smooth Banach spaces. Our result is proved under a weaker assumption on the moving set than those in [3], and using a different discretization.
引用
收藏
页数:6
相关论文
共 11 条
[1]  
Alber Y.I., 1993, Functional-Differential Equations, Funct. Differential Equations Israel Sem., V1, P1
[2]  
Alber YI., 2006, NONLINEAR ILL POSED
[3]   Proximal analysis in reflexive smooth Banach spaces [J].
Bounkhel, M. ;
Al-Yusof, R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (07) :1921-1939
[4]   On various notions of regularity of sets in nonsmooth analysis [J].
Bounkhel, M ;
Thibault, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 48 (02) :223-246
[5]   First and Second Order Convex Sweeping Processes in Reflexive Smooth Banach Spaces [J].
Bounkhel, Messaoud ;
Al-Yusof, Rabab .
SET-VALUED AND VARIATIONAL ANALYSIS, 2010, 18 (02) :151-182
[6]  
Clarke F.H, 1983, OPTIMIZATION NONSMOO
[7]   The generalized projection operator on reflexive Banach spaces and its applications [J].
Li, JL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 306 (01) :55-71
[8]   EVOLUTION PROBLEM ASSOCIATED WITH A MOVING CONVEX SET IN A HILBERT-SPACE [J].
MOREAU, JJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1977, 26 (03) :347-374
[9]  
Penot JP., 1998, Abstr. Appl. Anal, V3, P85, DOI DOI 10.1155/S1085337598000451
[10]  
Takahashi W., 2000, Nonlinear functional analysis