Growth rates in epidemic models: Application to a model for HIV/AIDS progression

被引:21
|
作者
Gran, Jon Michael [1 ]
Wasmuth, Linn [1 ]
Amundsen, Ellen J. [2 ]
Lindqvist, Bo H. [3 ]
Aalen, Odd O. [1 ]
机构
[1] Univ Oslo, Inst Basic Med Sci, Dept Biostat, N-0317 Oslo, Norway
[2] SIRUS, Norwegian Inst Alcohol & Drug Res, N-0105 Oslo, Norway
[3] Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
关键词
infectious disease modelling; basic reproduction number; intrinsic growth rate; epidemic growth rate; SIR model; HIV infection;
D O I
10.1002/sim.3219
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The most common quantity used to describe the growth of an epidemic when modelling infectious diseases is the basic reproduction number R-0. While R0 is most appropriate for epidemics with short-lasting infections, long-lasting infections such as HIV/AIDS may call for the use of growth rates with other properties. For a group of multi-state compartment models we define both R0, the actual reproduction number R-a(t), and the intrinsic growth rate r. We study the relationship between these different reproduction numbers and growth rates and take a brief look at how they could be estimated from actual observed data. The work is illustrated by a model for HIV/AIDS progression among homosexual men in England and Wales. We conclude that other measures of growth, in addition to R0, give important supplementary information. Copyright (C) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:4819 / 4836
页数:18
相关论文
共 50 条
  • [1] Stability analysis of an HIV/AIDS epidemic model with treatment
    Cai, Liming
    Li, Xuezhi
    Ghosh, Mini
    Guo, Baozhu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 229 (01) : 313 - 323
  • [2] Dynamical Behaviour of an HIV/AIDS Epidemic Model
    Sharma S.
    Samanta G.P.
    Differential Equations and Dynamical Systems, 2014, 22 (4) : 369 - 395
  • [3] Analysis of an extended HIV/AIDS epidemic model with treatment
    Cai, Liming
    Guo, Shuli
    Wang, Shuping
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 236 : 621 - 627
  • [4] Modelling and stability of HIV/AIDS epidemic model with treatment
    Huo, Hai-Feng
    Chen, Rui
    Wang, Xun-Yang
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (13-14) : 6550 - 6559
  • [5] Stochastic dynamics of an HIV/AIDS epidemic model with treatment
    Nsuami, Mozart U.
    Witbooi, Peter J.
    QUAESTIONES MATHEMATICAE, 2019, 42 (05) : 605 - 621
  • [6] Impulsive SUI epidemic model for HIV/AIDS with chronological age and infection age
    Yan, Ping
    JOURNAL OF THEORETICAL BIOLOGY, 2010, 265 (02) : 177 - 184
  • [7] Global dynamics of a staged-progression model for HIV/AIDS with amelioration
    Guo, Hongbin
    Li, Michael Y.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (05) : 2529 - 2540
  • [8] Optimal Solution of a Fractional HIV/AIDS Epidemic Mathematical Model
    Hassani, Hossein
    Avazzadeh, Zakieh
    Machado, J. A. Tenreiro
    Agarwal, Praveen
    Bakhtiar, Maryam
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (03) : 276 - 291
  • [9] Influence of the topology on the dynamics of a complex network of HIV/AIDS epidemic models
    Cantin, Guillaume
    Silva, Cristiana J.
    AIMS MATHEMATICS, 2019, 4 (04): : 1145 - 1169
  • [10] Study on a HIV/AIDS model with application to Yunnan province, China
    Zhang, Tailei
    Jia, Manhong
    Luo, Hongbing
    Zhou, Yicang
    Wang, Ning
    APPLIED MATHEMATICAL MODELLING, 2011, 35 (09) : 4379 - 4392