A NOTE ON THE (ACCELERATED) PROXIMAL GRADIENT METHOD FOR COMPOSITE CONVEX OPTIMIZATION

被引:0
作者
Li, Qingjing [1 ]
Tan, Li [1 ]
Guo, Ke [2 ]
机构
[1] China West Normal Univ, Sch Math & Informat, Nanchong 637002, Peoples R China
[2] China West Normal Univ, Sch Math & Informat, Sichuan Coll & Univ Key Lab Optimizat Theory & AP, Nanchong 637002, Peoples R China
基金
中国博士后科学基金;
关键词
Acceleration; convex programming; proximal gradient; convergence rate; THRESHOLDING ALGORITHM; SHRINKAGE; SUM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The proximal gradient method and its accelerated versions are widely studied under different scenarios. In this paper, we focus on the composite convex optimization problem and propose a relax assumption to adapt the step size of the proximal gradient method and its accelerated version without explicitly knowing the Lipschitz constant of the gradient of the smooth function. Under the proposed relaxed rules, we prove the convergence of the sequence and O(1/k) convergence rate in terms of function values for the proximal gradient method and the O(1/k(2)) convergence rate in terms of function values for the accelerated proximal gradient method, respectively.
引用
收藏
页码:2847 / 2857
页数:11
相关论文
共 14 条
[1]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[2]   Atomic decomposition by basis pursuit [J].
Chen, SSB ;
Donoho, DL ;
Saunders, MA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :33-61
[3]  
d'Aspremont A, 2024, Arxiv, DOI [arXiv:2101.09545, DOI 10.48550/ARXIV.2101.09545, 10.48550/ARXIV.2101.09545]
[4]   An iterative thresholding algorithm for linear inverse problems with a sparsity constraint [J].
Daubechies, I ;
Defrise, M ;
De Mol, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (11) :1413-1457
[5]   Least angle regression - Rejoinder [J].
Efron, B ;
Hastie, T ;
Johnstone, I ;
Tibshirani, R .
ANNALS OF STATISTICS, 2004, 32 (02) :494-499
[6]  
Guo K., 2016, Convergence analysis of ISTA and FISTA for "strongly + semi"convex programming
[7]   Optimally linearizing the alternating direction method of multipliers for convex programming [J].
He, Bingsheng ;
Ma, Feng ;
Yuan, Xiaoming .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2020, 75 (02) :361-388
[8]   SPLITTING ALGORITHMS FOR THE SUM OF 2 NON-LINEAR OPERATORS [J].
LIONS, PL ;
MERCIER, B .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (06) :964-979
[9]   Gradient methods for minimizing composite functions [J].
Nesterov, Yu .
MATHEMATICAL PROGRAMMING, 2013, 140 (01) :125-161
[10]  
Nesterov Yu. E., 1983, Doklady Akademii Nauk SSSR, V269, P543