Equiconvergence of spectral decompositions of Hill-Schrodinger operators

被引:7
作者
Djakov, Plamen [1 ]
Mityagin, Boris [2 ]
机构
[1] Sabanci Univ, TR-34956 Istanbul, Turkey
[2] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
Hill-Schrodinger operators; Singular potentials; Spectral decompositions; Equiconvergence; STURM-LIOUVILLE OPERATORS; LINEAR-DIFFERENTIAL EQUATIONS; 1D DIRAC OPERATORS; SINGULAR POTENTIALS; EIGENFUNCTION-EXPANSIONS; BOUNDARY-VALUE; SOBOLEV; SERIES; CONVERGENCE; ASYMPTOTICS;
D O I
10.1016/j.jde.2013.07.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study in various functional spaces the equiconvergence of spectral decompositions of the Hill operator L = d(2)/dx(2) + v(x), x is an element of [0, pi], with H-per(-1)-potential and the free operator L-0 = -d(2)/dx(2), subject to periodic, antiperiodic or Dirichlet boundary conditions. In particular, we prove that parallel to S-N - S-N(0) : L-a -> L-b parallel to -> 0 if 1 < a <= b < infinity, 1/a - 1/b < 1/2, where S-N and S-N(0) are the N-th partial sums of the spectral decompositions of L and L-0. Moreover, if v is an element of H-alpha with 1/2 < alpha < 1 and 1/a = 3/2 - alpha, then we obtain uniform equiconvergence: parallel to S-N - S-N(0) : L-a -> L-infinity parallel to -> 0 as N -> infinity. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:3233 / 3283
页数:51
相关论文
共 60 条
[1]  
Agranovich M. S., 1994, Encyclopaedia Math. Sci., V63, P1
[3]   Boundary value and expansion problems of ordinary linear differential equations [J].
Birkhoff, George D. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1908, 9 (1-4) :373-395
[4]  
Carleson L., 1967, Van Nostrand Math. Studies, V13
[5]   Instability zones of periodic 1-dimensional Schrodinger and Dirac operators [J].
Djakov, P. ;
Mityagin, B. S. .
RUSSIAN MATHEMATICAL SURVEYS, 2006, 61 (04) :663-766
[6]   Spectral gap asymptotics of one-dimensional Schrodinger operators with singular periodic potentials [J].
Djakov, P. ;
Mityagin, B. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2009, 20 (3-4) :265-273
[7]   Equiconvergence of spectral decompositions of Hill operators [J].
Djakov, P. B. ;
Mityagin, B. S. .
DOKLADY MATHEMATICS, 2012, 86 (01) :542-544
[8]   Unconditional Convergence of Spectral Decompositions of 1D Dirac Operators with Regular Boundary Conditions [J].
Djakov, Plamen ;
Mityagin, Boris .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2012, 61 (01) :359-398
[9]   Criteria for existence of Riesz bases consisting of root functions of Hill and 1D Dirac operators [J].
Djakov, Plamen ;
Mityagin, Boris .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (08) :2300-2332
[10]   Equiconvergence of spectral decompositions of 1D Dirac operators with regular boundary conditions [J].
Djakov, Plamen ;
Mityagin, Boris .
JOURNAL OF APPROXIMATION THEORY, 2012, 164 (07) :879-927