Theoretical Foundations and Mathematical Formalism of the Power-Law Tailed Statistical Distributions

被引:88
作者
Kaniadakis, Giorgio [1 ]
机构
[1] Politecn Torino, Dept Appl Sci & Technol, I-10129 Turin, Italy
关键词
kappa-statistical mechanics; kappa-mathematics; kappa-exponential; kappa-logarithm; power-law tailed statistical distributions; NON-GAUSSIAN STATISTICS; STELLAR ROTATIONAL VELOCITIES; KAPPA-DEFORMED STATISTICS; H-THEOREM; ENTROPY; KANIADAKIS; PARAMETER; FRAMEWORK; EXPONENTIALS; STABILITIES;
D O I
10.3390/e15103983
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present the main features of the mathematical theory generated by the kappa-deformed exponential function exp(kappa)(x) = (root 1 + kappa(2)x(2) + kappa x)(1/kappa), with 0 <= kappa < 1, developed in the last twelve years, which turns out to be a continuous one parameter deformation of the ordinary mathematics generated by the Euler exponential function. The kappa-mathematics has its roots in special relativity and furnishes the theoretical foundations of the kappa-statistical mechanics predicting power law tailed statistical distributions, which have been observed experimentally in many physical, natural and artificial systems. After introducing the kappa-algebra, we present the associated kappa-differential and kappa-integral calculus. Then, we obtain the corresponding kappa-exponential and kappa-logarithm functions and give the kappa-version of the main functions of the ordinary mathematics.
引用
收藏
页码:3983 / 4010
页数:28
相关论文
共 80 条
[1]   Stabilities of generalized entropies [J].
Abe, S ;
Kaniadakis, G ;
Scarfone, AM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (44) :10513-10519
[2]   Nonextensive random-matrix theory based on Kaniadakis entropy [J].
Abul-Magd, A. Y. .
PHYSICS LETTERS A, 2007, 361 (06) :450-454
[3]   KAPPA-DEFORMED RANDOM-MATRIX THEORY BASED ON KANIADAKIS STATISTICS [J].
Abul-Magd, A. Y. ;
Abdel-Mageed, M. .
MODERN PHYSICS LETTERS B, 2012, 26 (10)
[4]   Nonextensive and superstatistical generalizations of random-matrix theory [J].
Abul-Magd, A. Y. .
EUROPEAN PHYSICAL JOURNAL B, 2009, 70 (01) :39-48
[5]   Bose-Einstein condensation in the framework of κ-statistics [J].
Aliano, A ;
Kaniadakis, G ;
Miraldi, E .
PHYSICA B-CONDENSED MATTER, 2003, 325 (1-4) :35-40
[6]   Non-Gaussian statistics, Maxwellian derivation and stellar polytropes [J].
Bento, E. P. ;
Silva, J. R. P. ;
Silva, R. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (04) :666-672
[7]   Exploiting the flexibility of a family of models for taxation and redistribution [J].
Bertotti, M. L. ;
Modanese, G. .
EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (08)
[8]   Two generalizations of the Boltzmann equation [J].
Biró, TS ;
Kaniadakis, G .
EUROPEAN PHYSICAL JOURNAL B, 2006, 50 (1-2) :3-6
[9]   Observational measurement of open stellar clusters: A test of Kaniadakis and Tsallis statistics [J].
Carvalho, J. C. ;
Silva, R. ;
do Nascimento, J. D., Jr. ;
Soares, B. B. ;
De Medeiros, J. R. .
EPL, 2010, 91 (06)
[10]   Power law statistics and stellar rotational velocities in the Pleiades [J].
Carvalho, J. C. ;
Silva, R. ;
do Nascimento, J. D., Jr. ;
De Medeiros, J. R. .
EPL, 2008, 84 (05) :59001P1-59001P6