A mass supercritical problem revisited

被引:135
作者
Jeanjean, Louis [1 ]
Lu, Sheng-Sen [2 ,3 ,4 ]
机构
[1] Univ Bourgogne Franche Comte, CNRS UMR 6623, Lab Math, F-25030 Besancon, France
[2] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[3] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[4] Peking Univ, LMAM, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
35J60; 35Q55; NONLINEAR SCHRODINGER-EQUATIONS; CONCENTRATION-COMPACTNESS PRINCIPLE; NORMALIZED SOLUTIONS; STANDING WAVES; PRESCRIBED NORM; GROUND-STATES; EXISTENCE; INSTABILITY; NLS; SEQUENCES;
D O I
10.1007/s00526-020-01828-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In any dimension N >= 1 and for given mass m>0, we revisit the nonlinear scalar field equation with an L2 constraint: <disp-formula id="Equ51"><mml:mtable><mml:mtr><mml:mtd columnalign="right"><mml:mfenced open="{"><mml:mtable><mml:mtr><mml:mtd columnalign="right">-Delta u</mml:mtd><mml:mtd columnalign="left">=f(u)-mu u<mml:mspace width="1em"></mml:mspace>in<mml:mspace width="3.33333pt"></mml:mspace>RN,</mml:mtd></mml:mtr><mml:mtr><mml:mtd columnalign="right">uL2(RN)2</mml:msubsup></mml:mtd><mml:mtd columnalign="left">=m,</mml:mtd></mml:mtr><mml:mtr><mml:mtd columnalign="right">u</mml:mtd><mml:mtd columnalign="left">is an element of H1(RN),</mml:mtd></mml:mtr></mml:mtable></mml:mfenced><mml:mspace width="2em"></mml:mspace><mml:mspace width="2em"></mml:mspace><mml:mspace width="2em"></mml:mspace><mml:mspace width="2em"></mml:mspace><mml:mspace width="2em"></mml:mspace><mml:mspace width="2em"></mml:mspace><mml:mspace width="2em"></mml:mspace><mml:mspace width="2em"></mml:mspace><mml:mspace width="2em"></mml:mspace><mml:mspace width="2em"></mml:mspace><mml:mspace width="2em"></mml:mspace><mml:mspace width="2em"></mml:mspace>(Pm)</mml:mtd></mml:mtr></mml:mtable><graphic position="anchor" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="526_2020_1828_Article_Equ51.gif"></graphic></disp-formula>where mu is an element of R will arise as a Lagrange multiplier. Assuming only that the nonlinearity f is continuous and satisfies weak mass supercritical conditions, we show the existence of ground states to (Pm) and reveal the basic behavior of the ground state energy <mml:msub>Em as m>0 varies. In particular, to overcome the compactness issue when looking for ground states, we develop robust arguments which we believe will allow treating other L2 constrained problems in general mass supercritical settings. Under the same assumptions, we also obtain infinitely many radial solutions for any N >= 2 and establish the existence and multiplicity of nonradial sign-changing solutions when N >= 4. Finally we propose two open problems.
引用
收藏
页数:43
相关论文
共 44 条
[1]   UNSTABLE NORMALIZED STANDING WAVES FOR THE SPACE PERIODIC NLS [J].
Ackermann, Nils ;
Weth, Tobias .
ANALYSIS & PDE, 2019, 12 (05) :1177-1213
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]  
[Anonymous], 2010, HDB NONCONVEX ANAL A
[4]   INFINITELY MANY NONRADIAL SOLUTIONS OF A EUCLIDEAN SCALAR FIELD EQUATION [J].
BARTSCH, T ;
WILLEM, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 117 (02) :447-460
[5]   Normalized solutions for a coupled Schrodinger system [J].
Bartsch, Thomas ;
Zhong, Xuexiu ;
Zou, Wenming .
MATHEMATISCHE ANNALEN, 2021, 380 (3-4) :1713-1740
[6]   Multiple normalized solutions for a competing system of Schrodinger equations [J].
Bartsch, Thomas ;
Soave, Nicola .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (01)
[7]   A natural constraint approach to normalized solutions of nonlinear Schrodinger equations and systems (vol 272, pg 4998, 2017) [J].
Bartsch, Thomas ;
Soave, Nicola .
JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 275 (02) :516-521
[8]   A natural constraint approach to normalized solutions of nonlinear Schrodinger equations and systems [J].
Bartsch, Thomas ;
Soave, Nicola .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (12) :4998-5037
[9]   Normalized solutions for a system of coupled cubic Schrodinger equations on R3 [J].
Bartsch, Thomas ;
Jeanjean, Louis ;
Soave, Nicola .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (04) :583-614
[10]   Normalized solutions of nonlinear Schrodinger equations [J].
Bartsch, Thomas ;
de Valeriola, Sebastien .
ARCHIV DER MATHEMATIK, 2013, 100 (01) :75-83