Nonvarying sums of Lyapunov exponents of Abelian differentials in low genus

被引:32
作者
Chen, Dawei [1 ]
Moeller, Martin
机构
[1] Boston Coll, Dept Math, Chestnut Hill, MA 02467 USA
基金
美国国家科学基金会;
关键词
MODULI SPACES; TEICHMULLER CURVES; KODAIRA DIMENSION; STABLE CURVES; SURFACES; FAMILIES; COVERINGS; DIVISORS; POINTS;
D O I
10.2140/gt.2012.16.2427
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that for many strata of Abelian differentials in low genus the sum of Lyapunov exponents for the Teichmuller geodesic flow is the same for all Teichmuller curves in that stratum, hence equal to the sum of Lyapunov exponents for the whole stratum. This behavior is due to the disjointness property of Teichmuller curves with various geometrically defined divisors on moduli spaces of curves.
引用
收藏
页码:2427 / 2479
页数:53
相关论文
共 40 条
[1]  
[Anonymous], GRADUATE TEXTS MATH
[2]   THE PICARD-GROUPS OF THE MODULI SPACES OF CURVES [J].
ARBARELLO, E ;
CORNALBA, M .
TOPOLOGY, 1987, 26 (02) :153-171
[3]  
Arbarello E., 1985, Geometry of algebraic curves, VI
[4]   Euler characteristics of Teichmuller curves in genus two [J].
Bainbridge, Matt .
GEOMETRY & TOPOLOGY, 2007, 11 :1887-2073
[5]  
Beauville A., 1996, LONDON MATH SOC STUD, V34, DOI DOI 10.1017/CBO9780511623936
[6]   Teichmuller curves, triangle groups, and Lyapunov exponents [J].
Bouw, Irene I. ;
Moeller, Martin .
ANNALS OF MATHEMATICS, 2010, 172 (01) :139-185
[7]   Square-tiled surfaces and rigid curves on moduli spaces [J].
Chen, Dawei .
ADVANCES IN MATHEMATICS, 2011, 228 (02) :1135-1162
[8]   Covers of elliptic curves and the moduli space of stable curves [J].
Chen, Dawei .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 649 :167-205
[9]  
Cornalba M., 1987, LECT RIEMANN SURFACE, P560
[10]   Degenerations of surface scrolls and the Gromov-Witten invariants of Grassmannians [J].
Coskun, I .
JOURNAL OF ALGEBRAIC GEOMETRY, 2006, 15 (02) :223-284