Integrability classification and exact solutions to generalized variable-coefficient nonlinear evolution equation

被引:4
作者
Liu, Han-Ze [1 ]
Zhang, Li-Xiang [1 ]
机构
[1] Liaocheng Univ, Sch Math Sci, Liaocheng 252059, Peoples R China
基金
中国国家自然科学基金;
关键词
Painleve test; integrability classification; Lax pair; truncated expansion; exact solution; TRAVELING-WAVE SOLUTIONS; BACKLUND TRANSFORMATION; PAINLEVE PROPERTY;
D O I
10.1088/1674-1056/27/4/040202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper is concerned with the generalized variable-coefficient nonlinear evolution equation (vc-NLEE). The complete integrability classification is presented, and the integrable conditions for the generalized variable-coefficient equations are obtained by the Painleve analysis. Then, the exact explicit solutions to these vc-NLEEs are investigated by the truncated expansion method, and the Lax pairs (LP) of the vc-NLEEs are constructed in terms of the integrable conditions.
引用
收藏
页数:6
相关论文
共 24 条
[1]  
Ablowitz M., 1981, SOLITION INVERSE SCA
[2]  
Bluman GW., 2002, Symmetry and integration methods for differential equations
[3]  
Conte R., 2008, The Painleve Handbook
[4]   Exact explicit travelling wave solutions for the (n+1)-dimensional Φ6 field model [J].
Feng, Dahe ;
Li, Jibin .
PHYSICS LETTERS A, 2007, 369 (04) :255-261
[5]   Exact Traveling Wave Solutions of the Krichever-Novikov Equation: A Dynamical System Approach [J].
Kou, KitIan ;
Li, Jibin .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (04)
[6]  
Liu HZ, 2016, COMMUN THEOR PHYS, V66, P155, DOI 10.1088/0253-6102/66/2/155
[7]   Lie symmetries, integrable properties and exact solutions to the variable-coefficient nonlinear evolution equations [J].
Liu, Hanze ;
Yue, Chao .
NONLINEAR DYNAMICS, 2017, 89 (03) :1989-2000
[8]   Backlund transformation classification, integrability and exact solutions to the generalized Burgers'-KdV equation [J].
Liu, Hanze ;
Xin, Xiangpeng ;
Wang, Zenggui ;
Liu, Xiqiang .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 44 :11-18
[9]  
MA W, 1994, J FUDAN U NATURAL SC, V33, P319
[10]  
MA WX, 1997, J NONLINEAR MATH PHY, V4, P293