Helper bacteria halt and disarm mushroom pathogens by linearizing structurally diverse cyclolipopeptides

被引:31
作者
Hermenau, Ron [1 ]
Kugel, Susann [1 ]
Komor, Anna J. [1 ]
Hertweck, Christian [1 ,2 ]
机构
[1] Leibniz Inst Nat Prod Res & Infect Biol HKI, Dept Biomol Chem, D-07745 Jena, Germany
[2] Friedrich Schiller Univ Jena, Fac Biol Sci, D-07743 Jena, Germany
关键词
antivirulence; brown blotch disease; cyclic lipopeptides; Mycetocola; tolaasin; IMAGING MASS-SPECTROMETRY; PSEUDOMONAS-TOLAASII; CYCLIC LIPODEPSIPEPTIDES; VIRULENCE FACTOR; ANTIVIRULENCE; STRATEGIES; REACTANS; WLIP; VISCOSINAMIDE; CONFORMATION;
D O I
10.1073/pnas.2006109117
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The bacterial pathogen Pseudomonas tolaasii severely damages white button mushrooms by secretion of the pore-forming toxin tolaasin, the main virulence factor of brown blotch disease. Yet, fungus-associated helper bacteria of the genus Mycetocola (Mycetocola tolaasinivorans and Mycetocola lacteus) may protect their host by an unknown detoxification mechanism. By a combination of metabolic profiling, imaging mass spectrometry, structure elucidation, and bioassays, we found that the helper bacteria inactivate tolaasin by linearizing the lipocyclopeptide. Furthermore, we found that Mycetocola spp. impair the dissemination of the pathogen by cleavage of the lactone ring of pseudodesmin. The role of pseudodesmin as a major swarming factor was corroborated by identification and inactivation of the corresponding biosynthetic gene cluster. Activity-guided fractionation of the Mycetocola proteome, matrix-assisted laser desorption/ionization (MALDI) analyses, and heterologous enzyme production identified the lactonase responsible for toxin cleavage. We revealed an antivirulence strategy in the context of a tripartite interaction that has high ecological and agricultural relevance.
引用
收藏
页码:23802 / 23806
页数:5
相关论文
共 34 条
[1]   Tolaasins A-E, five new lipodepsipeptides produced by Pseudomonas tolaasii [J].
Bassarello, C ;
Lazzaroni, S ;
Bifulco, G ;
Lo Cantore, P ;
Iacobellis, NS ;
Riccio, R ;
Gomez-Paloma, L ;
Evidente, A .
JOURNAL OF NATURAL PRODUCTS, 2004, 67 (05) :811-816
[2]   antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline [J].
Blin, Kai ;
Shaw, Simon ;
Steinke, Katharina ;
Villebro, Rasmus ;
Ziemert, Nadine ;
Lee, Sang Yup ;
Medema, Marnix H. ;
Weber, Tilmann .
NUCLEIC ACIDS RESEARCH, 2019, 47 (W1) :W81-W87
[3]   The arsenal of pathogens and antivirulence therapeutic strategies for disarming them [J].
Brannon, John R. ;
Hadjifrangiskou, Maria .
DRUG DESIGN DEVELOPMENT AND THERAPY, 2016, 10 :1795-1806
[4]   Two types of ion channel formation of tolaasin, a Pseudomonas peptide toxin [J].
Cho, KH ;
Kim, YK .
FEMS MICROBIOLOGY LETTERS, 2003, 221 (02) :221-226
[5]  
Cho KH, 2007, J BIOCHEM MOL BIOL, V40, P113
[6]   WLIP and tolaasin I, lipodepsipeptides from Pseudomonas reactans and Pseudomonas tolaasii, permeabilise model membranes [J].
Coraiola, M. ;
Lo Cantore, P. ;
Lazzaroni, S. ;
Evidente, A. ;
Lacobellis, N. S. ;
Dalla Serra, M. .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2006, 1758 (11) :1713-1722
[7]   Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance [J].
Dickey, Seth W. ;
Cheung, Gordon Y. C. ;
Otto, Michael .
NATURE REVIEWS DRUG DISCOVERY, 2017, 16 (07) :457-471
[8]   Strategies to Block Bacterial Pathogenesis by Interference with Motility and Chemotaxis [J].
Erhardt, Marc .
HOW TO OVERCOME THE ANTIBIOTIC CRISIS: FACTS, CHALLENGES, TECHNOLOGIES AND FUTURE PERSPECTIVES, 2016, 398 :185-205
[9]   Antivirulence as a new antibacterial approach for chemotherapy [J].
Escaich, Sonia .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2008, 12 (04) :400-408
[10]   The enzymes of bacterial census and censorship [J].
Fast, Walter ;
Tipton, Peter A. .
TRENDS IN BIOCHEMICAL SCIENCES, 2012, 37 (01) :7-14