Uniformly nonsquare Banach spaces have the fixed point property for nonexpansive mappings

被引:89
作者
García-Falset, J
Llorens-Fuster, E
Mazcuñan-Navarro, EM
机构
[1] Univ Valencia, Dept Anal Matemat, E-46100 Valencia, Spain
[2] Univ Leon, Dept Matemat, E-24071 Leon, Spain
关键词
nonexpansive mappings; fixed points; uniformly nonsquare spaces; nearly uniform smoothness;
D O I
10.1016/j.jfa.2005.09.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that if the modulus Gamma(X) of nearly uniform smoothness of a reflexive Banach space satisfies Gamma'(X) (0) < 1, then every bounded closed convex subset of X has the fixed point property for nonexpansive mappings. In particular, uniformly nonsquare Banach spaces have this property since they are properly included in this class of spaces. This answers a long-standing question in the theory. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:494 / 514
页数:21
相关论文
共 31 条
[21]  
KHAMSI MA, 1987, THESIS U PARIS 6
[22]   A FIXED POINT THEOREM FOR MAPPINGS WHICH DO NOT INCREASE DISTANCES [J].
KIRK, WA .
AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (09) :1004-&
[23]  
MAUREY B, 1980, SEM AN FUNCT EC POL
[24]  
PRUS S, 1989, B UNIONE MAT ITAL, V3B, P507
[25]  
Przeslawski K, 1995, MICH MATH J, V42, P555
[26]   Some properties of Gurarii's modulus of convexity [J].
Sánchez, L ;
Ullán, A .
ARCHIV DER MATHEMATIK, 1998, 71 (05) :399-406
[27]   On some Banach space properties sufficient for weak normal structure and their permanence properties [J].
Sims, B ;
Smyth, MA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (02) :497-513
[28]  
SIMS B, 1994, B AUSTR MATH SOC, V50, P523
[29]  
SIMS B, 1996, RECENT ADV METRIC FI
[30]  
Sims B., 1988, P CTR AUSTR NAT U, V20, P179