Uniformly nonsquare Banach spaces have the fixed point property for nonexpansive mappings

被引:89
作者
García-Falset, J
Llorens-Fuster, E
Mazcuñan-Navarro, EM
机构
[1] Univ Valencia, Dept Anal Matemat, E-46100 Valencia, Spain
[2] Univ Leon, Dept Matemat, E-24071 Leon, Spain
关键词
nonexpansive mappings; fixed points; uniformly nonsquare spaces; nearly uniform smoothness;
D O I
10.1016/j.jfa.2005.09.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that if the modulus Gamma(X) of nearly uniform smoothness of a reflexive Banach space satisfies Gamma'(X) (0) < 1, then every bounded closed convex subset of X has the fixed point property for nonexpansive mappings. In particular, uniformly nonsquare Banach spaces have this property since they are properly included in this class of spaces. This answers a long-standing question in the theory. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:494 / 514
页数:21
相关论文
共 31 条
[1]  
Baronti M., 1981, Boll. Un. Mat. Ital, V5, P1065
[2]  
Benitez C, 1998, STUD MATH, V127, P21
[3]  
BYNUM WL, 1972, COMPOS MATH, V25, P233
[4]   On a generalized James constant [J].
Dhompongsa, S ;
Kaewkhao, A ;
Tasena, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 285 (02) :419-435
[5]   Generalised Jordan-Von Neumann constants and uniform normal structure [J].
Dhompongsa, S ;
Piraisangjun, P ;
Saejung, S .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2003, 67 (02) :225-240
[6]  
Dominguez-Benavides T, 1996, HOUSTON J MATH, V22, P835
[7]  
DominguezBenavides T, 1995, GLASGOW MATH J, V37, P143
[8]  
Elton J, 1983, CONT MATH, V18, P87
[9]   Banach spaces which are somewhat uniformly noncreasy [J].
Fetter, H ;
de Buen, BG ;
García-Falset, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 285 (02) :444-455
[10]   ON 2 CLASSES OF BANACH-SPACES WITH UNIFORM NORMAL STRUCTURE [J].
GAO, J ;
LAU, KS .
STUDIA MATHEMATICA, 1991, 99 (01) :41-56