Study of quantum confinement effects in ZnO nanostructures

被引:30
|
作者
Movlarooy, Tayebeh [1 ]
机构
[1] Shahrood Univ Technol, Fac Phys & Nucl Engn, Shahrood, Iran
来源
MATERIALS RESEARCH EXPRESS | 2018年 / 5卷 / 03期
关键词
zinc oxide nanotubes; quantum confinement effect; band structure; nanowires; density functional theory; AB-INITIO CALCULATIONS; ELECTRONIC-STRUCTURE; CARBON NANOTUBE; OPTICAL-SPECTRA; DOTS; EMISSION; SYSTEMS;
D O I
10.1088/2053-1591/aab389
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Motivation to fact that zinc oxide nanowires and nanotubes with successful synthesis and the mechanism of formation, stability and electronic properties have been investigated; in this study the structural, electronic properties and quantum confinement effects of zinc oxide nanotubes and nanowires with different diameters are discussed. The calculations within density functional theory and the pseudo potential approximation are done. The electronic structure and energy gap for Armchair and zigzag ZnO nanotubes with a diameter of about 4 to 55 Angstrom and ZnO nanowires with a diameter range of 4 to 23 angstrom is calculated. The results revealed that due to the quantum confinement effects, by reducing the diameter of nanowires and nanotubes, the energy gap increases. Zinc oxide semiconductor nanostructures since having direct band gap with size-dependent and quantum confinement effect are recommended as an appropriate candidate for making nanoscale optoelectronic devices.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Electron confinement effects in the EPR spectra of colloidal n-type ZnO quantum dots
    Whitaker, Kelly M.
    Ochsenbein, Stefan T.
    Polinger, Victor Z.
    Gamelin, Daniel R.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (37): : 14331 - 14335
  • [42] Band gap widening and quantum confinement effects of ZnO Nanowires by first-principles calculation
    Guo, Meili
    Zhang, X. D.
    ADVANCED MATERIAL SCIENCE AND TECHNOLOGY, PTS 1 AND 2, 2011, 675-677 : 243 - +
  • [43] Strong Quantum Confinement Effects and Chiral Excitons in BioInspired ZnO-Amino Acid Cocrystals
    Muhammed, Madathumpady Abubaker Habeeb
    Lamers, Marlene
    Baumann, Verena
    Dey, Priyanka
    Blanch, Adam J.
    Polishchuk, Iryna
    Kong, Xiang-Tian
    Levy, Davide
    Urban, Alexander S.
    Govorov, Alexander O.
    Pokroy, Boaz
    Rodriguez-Fernandez, Jessica
    Feldmann, Jochen
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (11): : 6348 - 6356
  • [44] Long-range transport in an assembly of ZnO quantum dots: The effects of quantum confinement, coulomb repulsion and structural disorder
    Roest, AL
    Germeau, A
    Kelly, JJ
    Vanmaekelbergh, D
    Allan, G
    Meulenkamp, EA
    CHEMPHYSCHEM, 2003, 4 (09) : 959 - 966
  • [45] THEORETICAL STUDY OF THE QUANTUM CONFINEMENT EFFECTS ON QUANTUM DOTS USING PARTICLE IN A BOX MODEL
    Onyia, A. I.
    Ikeri, H. I.
    Nwobodo, A. N.
    JOURNAL OF OVONIC RESEARCH, 2018, 14 (01): : 49 - 54
  • [46] Electron confinement effects on Ni-based nanostructures
    Veuillen, JY
    Mallet, P
    Magaud, L
    Pons, S
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (34) : S2547 - S2574
  • [47] Orbital magnetism of graphene nanostructures: Bulk and confinement effects
    Hesse, Lisa
    Richter, Klaus
    PHYSICAL REVIEW B, 2014, 90 (20)
  • [48] Confinement effects in crystallization and Er doping of Si nanostructures
    Zacharias, M
    Heitmann, J
    Schmidt, M
    Streitenberger, P
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2001, 11 (2-3): : 245 - 251
  • [49] A two-step obtainment of quantum confinement in ZnO nanorods
    Mofor, A. C.
    El-Shaer, A.
    Suleiman, M.
    Bakin, A.
    Waag, A.
    NANOTECHNOLOGY, 2006, 17 (19) : 4859 - 4862
  • [50] Size-dependent photoluminescence in silicon nanostructures: quantum confinement effect
    Kumar, V.
    Saxena, K.
    Shukla, A. K.
    MICRO & NANO LETTERS, 2013, 8 (06): : 311 - 314