Study of quantum confinement effects in ZnO nanostructures

被引:30
|
作者
Movlarooy, Tayebeh [1 ]
机构
[1] Shahrood Univ Technol, Fac Phys & Nucl Engn, Shahrood, Iran
来源
MATERIALS RESEARCH EXPRESS | 2018年 / 5卷 / 03期
关键词
zinc oxide nanotubes; quantum confinement effect; band structure; nanowires; density functional theory; AB-INITIO CALCULATIONS; ELECTRONIC-STRUCTURE; CARBON NANOTUBE; OPTICAL-SPECTRA; DOTS; EMISSION; SYSTEMS;
D O I
10.1088/2053-1591/aab389
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Motivation to fact that zinc oxide nanowires and nanotubes with successful synthesis and the mechanism of formation, stability and electronic properties have been investigated; in this study the structural, electronic properties and quantum confinement effects of zinc oxide nanotubes and nanowires with different diameters are discussed. The calculations within density functional theory and the pseudo potential approximation are done. The electronic structure and energy gap for Armchair and zigzag ZnO nanotubes with a diameter of about 4 to 55 Angstrom and ZnO nanowires with a diameter range of 4 to 23 angstrom is calculated. The results revealed that due to the quantum confinement effects, by reducing the diameter of nanowires and nanotubes, the energy gap increases. Zinc oxide semiconductor nanostructures since having direct band gap with size-dependent and quantum confinement effect are recommended as an appropriate candidate for making nanoscale optoelectronic devices.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Quantum confinement in black phosphorus-based nanostructures
    Cupo, Andrew
    Meunier, Vincent
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (28)
  • [22] Quantum confinement in Si and Ge nanostructures: Effect of crystallinity
    Barbagiovanni, Eric G.
    Lockwood, David J.
    Costa Filho, Raimundo N.
    Goncharova, Lyudmila V.
    Simpson, Peter J.
    PHOTONICS NORTH 2013, 2013, 8915
  • [23] Quantum confinement in Si and Ge nanostructures: Theory and experiment
    Barbagiovanni, Eric G.
    Lockwood, David J.
    Simpson, Peter J.
    Goncharova, Lyudmila V.
    APPLIED PHYSICS REVIEWS, 2014, 1 (01):
  • [24] Quantum confinement of localized excitons in amorphous silicon nanostructures
    Kanemitsu, Y
    Nihonyanagi, S
    Fukunishi, Y
    Kushida, T
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 2002, 190 (03): : 769 - 773
  • [25] On quantum efficiency of photoluminescence in ZnO layers and nanostructures
    Reshchikov, M. A.
    El-Shaer, A.
    Behrends, A.
    Bakin, A.
    Waag, A.
    PHYSICA B-CONDENSED MATTER, 2009, 404 (23-24) : 4813 - 4815
  • [26] Quantum Effects in Nanostructures
    Ma, Xu-Cun
    WOMEN IN PHYSICS, 2019, 2109
  • [27] Quantum confinement effects in the soft x-ray fluorescence spectra of porous silicon nanostructures
    Eisebitt, S
    Luning, J
    Rubensson, JE
    vanBuuren, T
    Patitsas, SN
    Tiedje, T
    Berger, M
    ArensFischer, R
    Frohnhoff, S
    Eberhardt, W
    SOLID STATE COMMUNICATIONS, 1996, 97 (07) : 549 - 552
  • [28] Quantum confinement and strong coulombic correlation in ZnO nanocrystals
    Kwak, Hyunwook
    Tiago, Murilo L.
    Chelikowsky, James R.
    SOLID STATE COMMUNICATIONS, 2008, 145 (5-6) : 227 - 230
  • [29] Quantum confinement observed in ZnO/ZnMgO nanorod heterostructures
    Park, WI
    Yi, GC
    Kim, M
    Pennycook, SJ
    ADVANCED MATERIALS, 2003, 15 (06) : 526 - 529
  • [30] Excitons in ZnO Quantum Dots: The Role of Dielectric Confinement
    Garoufalis, Christos S.
    Zeng, Zaiping
    Bester, Gabriel
    Galanakis, Iosif
    Hayrapetyan, David
    Paspalakis, Emmanuel
    Baskoutas, Sotirios
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (05): : 2833 - 2838