Study of quantum confinement effects in ZnO nanostructures

被引:30
|
作者
Movlarooy, Tayebeh [1 ]
机构
[1] Shahrood Univ Technol, Fac Phys & Nucl Engn, Shahrood, Iran
来源
MATERIALS RESEARCH EXPRESS | 2018年 / 5卷 / 03期
关键词
zinc oxide nanotubes; quantum confinement effect; band structure; nanowires; density functional theory; AB-INITIO CALCULATIONS; ELECTRONIC-STRUCTURE; CARBON NANOTUBE; OPTICAL-SPECTRA; DOTS; EMISSION; SYSTEMS;
D O I
10.1088/2053-1591/aab389
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Motivation to fact that zinc oxide nanowires and nanotubes with successful synthesis and the mechanism of formation, stability and electronic properties have been investigated; in this study the structural, electronic properties and quantum confinement effects of zinc oxide nanotubes and nanowires with different diameters are discussed. The calculations within density functional theory and the pseudo potential approximation are done. The electronic structure and energy gap for Armchair and zigzag ZnO nanotubes with a diameter of about 4 to 55 Angstrom and ZnO nanowires with a diameter range of 4 to 23 angstrom is calculated. The results revealed that due to the quantum confinement effects, by reducing the diameter of nanowires and nanotubes, the energy gap increases. Zinc oxide semiconductor nanostructures since having direct band gap with size-dependent and quantum confinement effect are recommended as an appropriate candidate for making nanoscale optoelectronic devices.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Surface and Quantum Confinement Effects in ZnO Nanocrystals
    Schoenhalz, Aline L.
    Arantes, Jeverson T.
    Fazzio, Adalberto
    Dalpian, Gustavo M.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (43): : 18293 - 18297
  • [2] Investigation of confinement effects in ZnO quantum dots
    Haranath, D.
    Sahai, Sonal
    Joshi, Amish G.
    Gupta, Bipin K.
    Shanker, V.
    NANOTECHNOLOGY, 2009, 20 (42)
  • [3] Polycrystalline ZnO films and quantum confinement effects in them
    Chukichev, MV
    Alivov, YI
    PHYSICS OF LOW-DIMENSIONAL STRUCTURES, 2002, 3-4 : 27 - 32
  • [4] Polycrystalline ZnO films and quantum confinement effects in them
    Chukichev, MV
    Alivov, YI
    PHYSICS OF LOW-DIMENSIONAL STRUCTURES, 2002, 9-10 : 1 - 6
  • [5] Multiple quantum confinement effects in charge density wave nanostructures
    Zhou, Lili
    Zhang, Yu
    Chen, Yaoyao
    Jia, Liangguang
    Zhang, Can
    Han, Xu
    Yang, Huixia
    Gao, Hong-Jun
    Wang, Yeliang
    PHYSICAL REVIEW B, 2024, 110 (19)
  • [6] Quantum confinement in ZnO nanorods
    Gu, Y
    Kuskovsky, IL
    Yin, M
    O'Brien, S
    Neumark, GF
    APPLIED PHYSICS LETTERS, 2004, 85 (17) : 3833 - 3835
  • [7] Dynamical nuclear polarization and confinement effects in ZnO quantum dots
    Baranov, Pavel G.
    Orlinskii, Sergei B.
    Hofmann, Detlev M.
    Donega, Celso de Mello
    Meijerink, Andries
    Schmidt, Jan
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2010, 247 (06): : 1476 - 1479
  • [8] Quantum confinement effects of thin ZnO films by experiment and theory
    Barnasas, A.
    Kanistras, N.
    Ntagkas, A.
    Anyfantis, D. I.
    Stamatelatos, A.
    Kapaklis, V.
    Bouropoulos, N.
    Mystiridou, E.
    Poulopoulos, P.
    Garoufalis, C. S.
    Baskoutas, S.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2020, 120
  • [9] Quantum confinement in Si and Ge nanostructures
    Barbagiovanni, E. G.
    Lockwood, D. J.
    Simpson, P. J.
    Goncharova, L. V.
    JOURNAL OF APPLIED PHYSICS, 2012, 111 (03)
  • [10] Confinement in Quantum Wire Periodic Nanostructures
    Rodriguez-Bolivar, S.
    Gomez-Campos, F. M.
    Luque-Rodriguez, A.
    Lopez-Villanueva, J. A.
    Carceller, J. E.
    2009 9TH IEEE CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2009, : 707 - 709