PERCEPTUAL EVALUATION OF SINGLE-IMAGE SUPER-RESOLUTION RECONSTRUCTION

被引:0
|
作者
Wang, Guangcheng [1 ]
Li, Leida [1 ]
Li, Qiaohong [2 ]
Gu, Ke [3 ]
Lu, Zhaolin [4 ]
Qian, Jiansheng [1 ]
机构
[1] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
[2] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
[3] Beijing Univ Technol, BJUT Fac Informat Technol, Beijing 100124, Peoples R China
[4] China Univ Min & Technol, Adv Anal & Computat Ctr, Xuzhou 221116, Peoples R China
基金
中国国家自然科学基金;
关键词
Super-resolution reconstruction; Image quality assessment; Database; No-reference; QUALITY ASSESSMENT;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
In recent years, single-image super-resolution (SR) reconstruction has aroused wide attention. Massive SR enhancement algorithms have been proposed. However, much less work has been down on the perceptual evaluation of SR enhanced images and the corresponding enhancement algorithms. In this work, we create a Super-resolution Reconstructed Image Database (SRID), which consists of images produced by two interpolation methods and six popular SR image enhancement algorithms at different amplification factors. Then, subjective experiment is conducted to collect the subjective scores by using the single-stimulus method. The performances of the SR image enhancement algorithms are then evaluated by the obtained subjective scores. Finally, the performances of the general-purpose no-reference (NR) image quality metrics are investigated on the SRID database. This study shows that it is difficult for the state-of-the-art NR image quality metrics to predict the quality of SR enhanced images.
引用
收藏
页码:3145 / 3149
页数:5
相关论文
共 50 条
  • [21] LOCAL OPERATOR ESTIMATION FOR SINGLE-IMAGE SUPER-RESOLUTION
    Tang, Yi
    Chen, Hong
    PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2015, : 39 - 44
  • [22] Improving Single-Image Super-Resolution with Dilated Attention
    Zhang, Xinyu
    Cheng, Boyuan
    Yang, Xiaosong
    Xiao, Zhidong
    Zhang, Jianjun
    You, Lihua
    ELECTRONICS, 2024, 13 (12)
  • [23] Collaborative Representation Cascade for Single-Image Super-Resolution
    Zhang, Yongbing
    Zhang, Yulun
    Zhang, Jian
    Xu, Dong
    Fu, Yun
    Wang, Yisen
    Ji, Xiangyang
    Dai, Qionghai
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (05): : 845 - 860
  • [24] FAST SINGLE-IMAGE SUPER-RESOLUTION WITH FILTER SELECTION
    Salvador, Jordi
    Perez-Pellitero, Eduardo
    Kochale, Axel
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 640 - 644
  • [25] An adaptive regression based single-image super-resolution
    Mingzheng Hou
    Ziliang Feng
    Haobo Wang
    Zhiwei Shen
    Sheng Li
    Multimedia Tools and Applications, 2022, 81 : 28231 - 28248
  • [26] Single-Image Super-Resolution Challenges: A Brief Review
    Ye, Shutong
    Zhao, Shengyu
    Hu, Yaocong
    Xie, Chao
    ELECTRONICS, 2023, 12 (13)
  • [27] Single-image super-resolution via local learning
    Tang, Yi
    Yan, Pingkun
    Yuan, Yuan
    Li, Xuelong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2011, 2 (01) : 15 - 23
  • [28] OPTIMIZED NEIGHBOR EMBEDDINGS FOR SINGLE-IMAGE SUPER-RESOLUTION
    Turkan, Mehmet
    Thoreau, Dominique
    Guillotel, Philippe
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 645 - 649
  • [29] A Fully Progressive Approach to Single-Image Super-Resolution
    Wang, Yifan
    Perazzi, Federico
    McWilliams, Brian
    Sorkine-Hornung, Alexander
    Sorkine-Hornung, Olga
    Schroers, Christopher
    PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, : 977 - 986
  • [30] Memory-efficient single-image super-resolution
    Chiapputo, Nicholas
    Bailey, Colleen P.
    BIG DATA IV: LEARNING, ANALYTICS, AND APPLICATIONS, 2022, 12097