PERCEPTUAL EVALUATION OF SINGLE-IMAGE SUPER-RESOLUTION RECONSTRUCTION

被引:0
|
作者
Wang, Guangcheng [1 ]
Li, Leida [1 ]
Li, Qiaohong [2 ]
Gu, Ke [3 ]
Lu, Zhaolin [4 ]
Qian, Jiansheng [1 ]
机构
[1] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
[2] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
[3] Beijing Univ Technol, BJUT Fac Informat Technol, Beijing 100124, Peoples R China
[4] China Univ Min & Technol, Adv Anal & Computat Ctr, Xuzhou 221116, Peoples R China
来源
2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2017年
基金
中国国家自然科学基金;
关键词
Super-resolution reconstruction; Image quality assessment; Database; No-reference; QUALITY ASSESSMENT;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
In recent years, single-image super-resolution (SR) reconstruction has aroused wide attention. Massive SR enhancement algorithms have been proposed. However, much less work has been down on the perceptual evaluation of SR enhanced images and the corresponding enhancement algorithms. In this work, we create a Super-resolution Reconstructed Image Database (SRID), which consists of images produced by two interpolation methods and six popular SR image enhancement algorithms at different amplification factors. Then, subjective experiment is conducted to collect the subjective scores by using the single-stimulus method. The performances of the SR image enhancement algorithms are then evaluated by the obtained subjective scores. Finally, the performances of the general-purpose no-reference (NR) image quality metrics are investigated on the SRID database. This study shows that it is difficult for the state-of-the-art NR image quality metrics to predict the quality of SR enhanced images.
引用
收藏
页码:3145 / 3149
页数:5
相关论文
共 50 条
  • [1] Single-Image Super-Resolution: A Benchmark
    Yang, Chih-Yuan
    Ma, Chao
    Yang, Ming-Hsuan
    COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 : 372 - 386
  • [2] Single-image super-resolution reconstruction via generative adversarial network
    Ju, Chunwu
    Su, Xiuqin
    Yang, Haoyuan
    Ning, Hailong
    9TH INTERNATIONAL SYMPOSIUM ON ADVANCED OPTICAL MANUFACTURING AND TESTING TECHNOLOGIES: OPTOELECTRONIC MATERIALS AND DEVICES FOR SENSING AND IMAGING, 2019, 10843
  • [3] Collaborative Representation Cascade for Single-Image Super-Resolution
    Zhang, Yongbing
    Zhang, Yulun
    Zhang, Jian
    Xu, Dong
    Fu, Yun
    Wang, Yisen
    Ji, Xiangyang
    Dai, Qionghai
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (05): : 845 - 860
  • [4] Single-Image Super-Resolution Challenges: A Brief Review
    Ye, Shutong
    Zhao, Shengyu
    Hu, Yaocong
    Xie, Chao
    ELECTRONICS, 2023, 12 (13)
  • [5] Single-image super-resolution reconstruction for continuous-wave terahertz imaging systems
    Wang H.
    Lang L.
    Pang Y.
    Zhang L.
    Zheng W.
    Xi S.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2023, 52 (01):
  • [6] A Conspectus of Deep Learning Techniques for Single-Image Super-Resolution
    Pandey, Garima
    Ghanekar, Umesh
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2022, 32 (01) : 11 - 32
  • [7] Face quality analysis of single-image super-resolution based on SIFT
    Xiao Hu
    Juan Sun
    Zhuohao Mai
    Shuyi Li
    Shaohu Peng
    Signal, Image and Video Processing, 2020, 14 : 829 - 837
  • [8] Face quality analysis of single-image super-resolution based on SIFT
    Hu, Xiao
    Sun, Juan
    Mai, Zhuohao
    Li, Shuyi
    Peng, Shaohu
    SIGNAL IMAGE AND VIDEO PROCESSING, 2020, 14 (04) : 829 - 837
  • [9] Accelerating Single-Image Super-Resolution Polynomial Regression in Mobile Devices
    Amanatiadis, Angelos
    Bampis, Loukas
    Gasteratos, Antonios
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2015, 61 (01) : 63 - 71
  • [10] Towards Robust Evaluation of Super-Resolution Satellite Image Reconstruction
    Kawulok, Michal
    Benecki, Pawel
    Nalepa, Jakub
    Kostrzewa, Daniel
    Skonieczny, Lukasz
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2018, PT I, 2018, 10751 : 476 - 486