Full Counting Statistics of Electrons through Interaction of the Single Quantum Dot System with the Optical Field

被引:1
作者
Liu, Weici [1 ,2 ,3 ]
Wang, Faqiang [4 ]
Tang, Zhilie [1 ,2 ]
Liang, Ruisheng [4 ]
机构
[1] South China Normal Univ, Guangdong Res Ctr Photoelect Detect Instrument En, Sch Phys & Telecommun Engn, Guangzhou 510006, Guangdong, Peoples R China
[2] South China Normal Univ, Sch Phys & Telecommun Engn, Guangdong Lab Quantum Engn & Quantum Mat, Guangzhou 510006, Guangdong, Peoples R China
[3] Guangzhou Coll Technol & Business, Dept Elect Informat Engn, Foshan 528138, Peoples R China
[4] South China Normal Univ, Sch Informat & Optoelect Sci & Engn, Lab Nanophoton Funct Mat & Devices, Guangzhou Key Lab Special Fiber Photon Devices, Guangzhou 510006, Guangdong, Peoples R China
来源
NANOMATERIALS | 2019年 / 9卷 / 03期
基金
中国国家自然科学基金;
关键词
quantum dot; full counting statistics; particle-number-resolved master equation; optical fields; STATES;
D O I
10.3390/nano9030394
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, using the particle-number-resolved master equation, the properties of full counting statistics (FCS) are investigated for a single quantum dot (QD) system interacting with optical fields in the thermal state, Fock state, coherent state, and coherent state with random phase. In these diverse quantum states of optical fields, average tunneling currents have different step shoulder heights at a lower bias voltage with the same light intensity, and a staircase-shaped current can be induced unexpectedly in vacuum state optical field. The characteristics of the Fano factor and skewness in the coherent state differ from those in all of the other cases. For avalanche-like transport at a lower bias voltage, the mechanism is a dynamical channel blockade in a moderate electron-photon interaction regime. There is a pronounced negative differential conductance that results from tuning the phase of the coherent state optical field in a symmetric QD system.
引用
收藏
页数:14
相关论文
共 42 条
[1]   Giant photon gain in large-scale quantum dot-circuit QED systems [J].
Agarwalla, Bijay Kumar ;
Kulkarni, Manas ;
Mukamel, Shaul ;
Segal, Dvira .
PHYSICAL REVIEW B, 2016, 94 (12)
[2]  
Bachor H.-A., 2019, A Guide to Experiments in Quantum Optics
[3]   Full counting statistics of super-Poissonian shot noise in multilevel quantum dots [J].
Belzig, W .
PHYSICAL REVIEW B, 2005, 71 (16)
[4]   Full counting statistics of electron transfer between superconductors [J].
Belzig, W ;
Nazarov, YV .
PHYSICAL REVIEW LETTERS, 2001, 87 (19) :197006-1
[5]   Shot noise in mesoscopic conductors [J].
Blanter, YM ;
Büttiker, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 336 (1-2) :1-166
[6]   Generation of photon number states on demand via cavity quantum electrodynamics [J].
Brattke, S ;
Varcoe, BTH ;
Walther, H .
PHYSICAL REVIEW LETTERS, 2001, 86 (16) :3534-3537
[7]   Effects of electron-phonon interaction on nonequilibrium transport through a single-molecule transistor -: art. no. 165324 [J].
Chen, ZZ ;
Lü, R ;
Zhu, BF .
PHYSICAL REVIEW B, 2005, 71 (16)
[8]  
Cohen-Tannoudji C, 1998, ATOM PHOTON INTERACT, P678
[9]   Electron-photon coupling in mesoscopic quantum electrodynamics [J].
Cottet, A. ;
Kontos, T. ;
Doucot, B. .
PHYSICAL REVIEW B, 2015, 91 (20)
[10]   Coupling a Quantum Dot, Fermionic Leads, and a Microwave Cavity on a Chip [J].
Delbecq, M. R. ;
Schmitt, V. ;
Parmentier, F. D. ;
Roch, N. ;
Viennot, J. J. ;
Feve, G. ;
Huard, B. ;
Mora, C. ;
Cottet, A. ;
Kontos, T. .
PHYSICAL REVIEW LETTERS, 2011, 107 (25)