A further refinement of Wilker's inequality

被引:51
作者
Wu, Shan-He [2 ]
Srivastava, H. M. [1 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC, Canada
[2] Longyan Univ, Dept Math & Comp Sci, Longyan, Fujian, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Wilker's inequality; Wilker-Anglesio inequality; power series; polynomial representation; Bernoulli numbers; exponential generating functions; refinement of Wilker's inequality; Riemann Zeta function; meromorphic continuation;
D O I
10.1080/10652460802340931
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By introducing the Taylor polynomials, a significantly refined version of Wilker's inequality is established. The result is then used to obtain several substantially more refined inequalities of the Wilker type.
引用
收藏
页码:757 / 765
页数:9
相关论文
共 21 条
[1]  
[Anonymous], OCTOG MATH MAG
[2]  
[Anonymous], 2005, RGMIA RES REP COLLEC
[3]  
Erdelyi A., 1953, Higher Transcendental Functions, California Institute of Technology. Bateman Manuscript Project, VI
[4]  
Guo BN, 2003, INEQUALITY THEORY AND APPLICATIONS, VOL 2, P109
[5]   On new proofs of Wilker's inequalities involving trigonometric functions [J].
Guo, BN ;
Qiao, BM ;
Qi, F ;
Li, W .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2003, 6 (01) :19-22
[6]  
GUO BN, 2000, RGMIA RES REP COLL, V3, P1
[7]  
HUYGENS C, 1940, OEUVRES COMPLETES, V1
[8]  
Meyyappan M, 2006, PROC IEEE MICR ELECT, P1
[9]   L'hospital rules for monotonicity and the Wilker-Anglesio inequality [J].
Pinelis, I .
AMERICAN MATHEMATICAL MONTHLY, 2004, 111 (10) :905-909
[10]  
Pinelis I., 2002, J. Inequal. Pure Appl. Math, V3, P1