An augmented Lagrangian method for distributed optimization

被引:95
作者
Chatzipanagiotis, Nikolaos [1 ]
Dentcheva, Darinka [2 ]
Zavlanos, Michael M. [1 ]
机构
[1] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA
[2] Stevens Inst Technol, Dept Math, Hoboken, NJ 07030 USA
基金
美国国家科学基金会;
关键词
Convex optimization; Monotropic programming; Alternating direction method; Network optimization; Diagonal quadratic approximation; Stochastic programming; DECOMPOSITION METHOD;
D O I
10.1007/s10107-014-0808-7
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a novel distributed method for convex optimization problems with a certain separability structure. The method is based on the augmented Lagrangian framework. We analyze its convergence and provide an application to two network models, as well as to a two-stage stochastic optimization problem. The proposed method compares favorably to two augmented Lagrangian decomposition methods known in the literature, as well as to decomposition methods based on the ordinary Lagrangian function.
引用
收藏
页码:405 / 434
页数:30
相关论文
共 30 条
[1]  
[Anonymous], 2009, MOS-SIAM Series on Optimization
[2]  
[Anonymous], 1983, AUGMENTED LAGRANGIAN, DOI DOI 10.1016/S0168-2024(08)70028-6
[3]  
Berge C., 1959, ESPACES TOPOLOGIQUES
[4]  
Berger A.J., 1994, SIAM J. Optim, V4, P735, DOI 10.1137/0804043
[5]  
Bertsekas D., 2015, Parallel and distributed computation: numerical methods
[6]   Extended Monotropic Programming and Duality [J].
Bertsekas, D. P. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2008, 139 (02) :209-225
[7]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[8]   A PROXIMAL-BASED DECOMPOSITION METHOD FOR CONVEX MINIMIZATION PROBLEMS [J].
CHEN, G ;
TEBOULLE, M .
MATHEMATICAL PROGRAMMING, 1994, 64 (01) :81-101
[9]  
Eckstein J., 1993, ORSA Journal on Computing, V5, P84, DOI 10.1287/ijoc.5.1.84
[10]   ON THE DOUGLAS-RACHFORD SPLITTING METHOD AND THE PROXIMAL POINT ALGORITHM FOR MAXIMAL MONOTONE-OPERATORS [J].
ECKSTEIN, J ;
BERTSEKAS, DP .
MATHEMATICAL PROGRAMMING, 1992, 55 (03) :293-318