Suppression of blow-up in Patlak-Keller-Segel-Navier-Stokes system via the Couette flow

被引:24
作者
Zeng, Lan [1 ]
Zhang, Zhifei [1 ]
Zi, Ruizhao [2 ,3 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Cent China Normal Univ, Sch Math & Stat, Wuhan 40079, Peoples R China
[3] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 40079, Peoples R China
基金
中国国家自然科学基金;
关键词
Patlak-Keller-Segel equation; Navier-Stokes equation; Couette flow; Enhanced dissipation;
D O I
10.1016/j.jfa.2021.108967
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the two dimensional Patlak-Keller-Segel-Navier-Stokes system near the Couette flow (Ay, 0) in T x R. It is shown that if A is large enough, the solution to the system stays globally regular. Both the parabolic-parabolic case and the parabolic-elliptic case are investigated. In particular, for the parabolic-parabolic case, an extra smallness assumption on the initial chemical gradient parallel to(del c(in))not equal parallel to(L2) is needed to control the mixing destabilizing effect. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:40
相关论文
共 38 条
[1]  
Alikakos N., 1979, Communications in Partial Differential Equations, V4, P827, DOI [10.1080/03605307908820113, DOI 10.1080/03605307908820113]
[2]  
[Anonymous], ARXIV14034975
[3]  
[Anonymous], 2009, HYPOCOERCIVITY
[4]   STABILITY OF THE COUETTE FLOW AT HIGH REYNOLDS NUMBERS IN TWO DIMENSIONS AND THREE DIMENSIONS [J].
Bedrossian, Jacob ;
Germain, Pierre ;
Masmoudi, Nader .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 56 (03) :373-414
[5]   The Sobolev Stability Threshold for 2D Shear Flows Near Couette [J].
Bedrossian, Jacob ;
Vicol, Vlad ;
Wang, Fei .
JOURNAL OF NONLINEAR SCIENCE, 2018, 28 (06) :2051-2075
[6]   SUPPRESSION OF BLOW-UP IN PATLAK-KELLER-SEGEL VIA SHEAR FLOWS [J].
Bedrossian, Jacob ;
He, Siming .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (06) :4722-4766
[7]   Enhanced Dissipation, Hypoellipticity, and Anomalous Small Noise Inviscid Limits in Shear Flows [J].
Bedrossian, Jacob ;
Zelati, Michele Coti .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 224 (03) :1161-1204
[8]   On the stability threshold for the 3D Couette flow in Sobolev regularity [J].
Bedrossian, Jacob ;
Germain, Pierre ;
Masmoudi, Nader .
ANNALS OF MATHEMATICS, 2017, 185 (02) :541-608
[9]   Enhanced Dissipation and Inviscid Damping in the Inviscid Limit of the Navier-Stokes Equations Near the Two Dimensional Couette Flow [J].
Bedrossian, Jacob ;
Masmoudi, Nader ;
Vicol, Vlad .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 219 (03) :1087-1159
[10]  
Blanchet A, 2008, COMMUN PUR APPL MATH, V61, P1449, DOI 10.1002/cpa.20225