Semi-supervised Hybrid Modeling of Atmospheric Pollution in Urban Centers

被引:10
作者
Bougoudis, Ilias [1 ]
Demertzis, Konstantinos [1 ]
Iliadis, Lazaros [1 ]
Anezakis, Vardis-Dimitris [1 ]
Papaleonidas, Antonios [1 ]
机构
[1] Democritus Univ Thrace, 193 Pandazidou St, N Orestiada 68200, Greece
来源
ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EANN 2016 | 2016年 / 629卷
关键词
Pollution of the atmosphere; Air quality; Semi-supervised learning; Semi-supervised clustering; Semi-supervised classification; Air pollution; OZONE CONCENTRATIONS; PREDICTION;
D O I
10.1007/978-3-319-44188-7_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Air pollution is directly linked with the development of technology and science, the progress of which besides significant benefits to mankind it also has adverse effects on the environment and hence on human health. The problem has begun to take worrying proportions especially in large urban centers, where 60,000 deaths are reported each year in Europe's towns and 3,000,000 worldwide, due to long-term air pollution exposure (exposure of the European Agency for the Environment http://www.eea.europa.eu/). In this paper we propose a novel and flexible hybrid machine learning system that combines Semi-Supervised Classification and Semi-Supervised Clustering, in order to realize prediction of air pollutants outliers and to study the conditions that favor their high concentration.
引用
收藏
页码:51 / 63
页数:13
相关论文
共 23 条
[1]   Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks [J].
Abdul-Wahab, SA ;
Al-Alawi, SM .
ENVIRONMENTAL MODELLING & SOFTWARE, 2002, 17 (03) :219-228
[2]  
Bougoudis I., 2014, IFIP ADV INF COMMUN, V436, P424, DOI [10.1007/978-3-662-44654-6_42, DOI 10.1007/978-3-662-44654-6_42, DOI 10.1007/978-3-662-44654-6_]
[3]   HISYCOL a hybrid computational intelligence system for combined machine learning: the case of air pollution modeling in Athens [J].
Bougoudis, Ilias ;
Demertzis, Konstantinos ;
Iliadis, Lazaros .
NEURAL COMPUTING & APPLICATIONS, 2016, 27 (05) :1191-1206
[4]   Fast and low cost prediction of extreme air pollution values with hybrid unsupervised learning [J].
Bougoudis, Ilias ;
Demertzis, Konstantinos ;
Iliadis, Lazaros .
INTEGRATED COMPUTER-AIDED ENGINEERING, 2016, 23 (02) :115-127
[5]  
Bougoudis I, 2014, COMM COM INF SC, V459, P1
[6]   A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: The case of Temuco, Chile [J].
Diaz-Robles, Luis A. ;
Ortega, Juan C. ;
Fu, Joshua S. ;
Reed, Gregory D. ;
Chow, Judith C. ;
Watson, John G. ;
Moncada-Herrera, Juan A. .
ATMOSPHERIC ENVIRONMENT, 2008, 42 (35) :8331-8340
[7]   Early Seizure Detection Algorithm Based on Intracranial EEG and Random Forest Classification [J].
Donos, Cristian ;
Duempelmann, Matthias ;
Schulze-Bonhage, Andreas .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2015, 25 (05)
[8]  
Driessens K, 2006, LECT NOTES ARTIF INT, V3918, P60
[9]   Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation [J].
Feng, Xiao ;
Li, Qi ;
Zhu, Yajie ;
Hou, Junxiong ;
Jin, Lingyan ;
Wang, Jingjie .
ATMOSPHERIC ENVIRONMENT, 2015, 107 :118-128
[10]   Artificial Neural Network Prediction of Tropospheric Ozone Concentrations in Istanbul, Turkey [J].
Inal, Fikret .
CLEAN-SOIL AIR WATER, 2010, 38 (10) :897-908