Abel inversion using total variation regularization: applications

被引:19
作者
Asaki, Thomas J. [1 ]
Campbell, Patrick R. [1 ]
Chartrand, Rick [1 ]
Powell, Collin E. [1 ]
Vixie, Kevin R. [1 ]
Wohlberg, Brendt E. [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
Abel transform; inverse problems; total variation; tomography; regularization;
D O I
10.1080/17415970600882549
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We apply total-variation (TV) regularization methods to Abel inversion tomography. inversions are performed using the fixed-point iteration method and the regularization parameter is chosen such that the resulting data fidelity approximates the known or estimated statistical character of the noisy data. Five one-dimensional (ID) examples illustrate the favorable characteristics of TV-regularized solutions: noise suppression and density discontinuity preservation. Experimental and simulated examples from X-ray radiography also illustrate limitations due to a linear projection approximation. TV-regularized inversions are shown to be superior to squared gradient (Tikhonov) regularized inversions for objects with density discontinuities. We also introduce an adaptive TV method that utilizes a modified discrete gradient operator acting only apart from data-determined density discontinuities. This method provides improved density level preservation relative to the basic TV method.
引用
收藏
页码:873 / 885
页数:13
相关论文
共 4 条
  • [1] [Anonymous], 1987, FRONT APPL MATH, DOI DOI 10.1137/1.9780898717570
  • [2] Abel inversion using total-variation regularization
    Asaki, TJ
    Chartrand, R
    Vixie, KR
    Wohlberg, B
    [J]. INVERSE PROBLEMS, 2005, 21 (06) : 1895 - 1903
  • [3] On the convergence of the lagged diffusivity fixed point method in total variation image restoration
    Chan, TF
    Mulet, P
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (02) : 354 - 367
  • [4] Kak AvinashC., 2001, CLASSICS APPL MATH, V33