Automatic Compression Ratio Allocation for Pruning Convolutional Neural Networks

被引:0
|
作者
Liu, Yunfeng [1 ]
Kong, Huihui [1 ]
Yu, Peihua [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Beijing, Peoples R China
来源
ICVISP 2019: PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON VISION, IMAGE AND SIGNAL PROCESSING | 2019年
基金
中国国家自然科学基金;
关键词
Neural Networks; Network Pruning; Model Compression; Computer Vision;
D O I
10.1145/3387168.3387184
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional neural networks (CNNs) have demonstrated significant performance improvement in many application scenarios. However, the high computational complexity and model size have limited its application on the mobile and embedded devices. Various approaches have been proposed to compress CNNs. Filter pruning is widely considered as a promising solution, which can significantly speed up the inference and reduce memory consumption. To this end, most approaches tend to prune filters by manually allocating compression ratio, which highly relies on individual expertise and not friendly to non-professional users. In this paper, we propose an Automatic Compression Ratio Allocation (ACRA) scheme based on binary search algorithm to prune convolutional neural networks. Specifically, ACRA provides two strategies for allocating compression ratio automatically. First, uniform pruning strategy allocates the same compression ratio to each layer, which is obtained by binary search based on target FLOPs reduction of the whole networks. Second, sensitivity-based pruning strategy allocates appropriate compression ratio to each layer based on the sensitivity to accuracy. Experimental results from VGG11 and VGG-16, demonstrate that our scheme can reduce FLOPs significantly while maintaining a high accuracy level. Specifically, for the VGG16 on CIFAR-10 dataset, we reduce 29.18% FLOPs with only 1.24% accuracy decrease.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Sparseness Ratio Allocation and Neuron Re-pruning for Neural Networks Compression
    Guo, Li
    Zhou, Dajiang
    Zhou, Jinjia
    Kimura, Shinji
    2018 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2018,
  • [2] Structured Pruning for Deep Convolutional Neural Networks: A Survey
    He, Yang
    Xiao, Lingao
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (05) : 2900 - 2919
  • [3] Blending Pruning Criteria for Convolutional Neural Networks
    He, Wei
    Huang, Zhongzhan
    Liang, Mingfu
    Liang, Senwei
    Yang, Haizhao
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT IV, 2021, 12894 : 3 - 15
  • [4] Discriminative Layer Pruning for Convolutional Neural Networks
    Jordao, Artur
    Lie, Maiko
    Schwartz, William Robson
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2020, 14 (04) : 828 - 837
  • [5] Iterative clustering pruning for convolutional neural networks
    Chang, Jingfei
    Lu, Yang
    Xue, Ping
    Xu, Yiqun
    Wei, Zhen
    KNOWLEDGE-BASED SYSTEMS, 2023, 265
  • [6] Automatic Pruning Rate Derivation for Structured Pruning of Deep Neural Networks
    Sakai, Yasufumi
    Iwakawa, Akinori
    Tabaru, Tsuguchika
    Inoue, Atsuki
    Kawaguchi, Hiroshi
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 2561 - 2567
  • [7] Metaheuristics for pruning convolutional neural networks: A comparative study
    Palakonda, Vikas
    Tursunboev, Jamshid
    Kang, Jae-Mo
    Moon, Sunghwan
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 268
  • [8] ACP: Automatic Channel Pruning Method by Introducing Additional Loss for Deep Neural Networks
    Haoran Yu
    Weiwei Zhang
    Ming Ji
    Chenghui Zhen
    Neural Processing Letters, 2023, 55 : 1071 - 1085
  • [9] ACP: Automatic Channel Pruning Method by Introducing Additional Loss for Deep Neural Networks
    Yu, Haoran
    Zhang, Weiwei
    Ji, Ming
    Zhen, Chenghui
    NEURAL PROCESSING LETTERS, 2023, 55 (02) : 1071 - 1085
  • [10] Convolutional Neural Network Compression via Dynamic Parameter Rank Pruning
    Sharma, Manish
    Heard, Jamison
    Saber, Eli
    Markopoulos, Panagiotis
    IEEE ACCESS, 2025, 13 : 18441 - 18456