Signless Laplacian eigenvalue problems of Nordhaus-Gaddum type

被引:4
作者
Huang, Xueyi [1 ]
Lin, Huiqiu [2 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
[2] East China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Signless Laplacian eigenvalue; Nordhaus-Gaddum type inequalities; Interlacing; Quotient matrix; 2ND LARGEST EIGENVALUE; SPREAD;
D O I
10.1016/j.laa.2019.07.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph of order n, and let q(1)(G) >= q(2)(G) >= center dot center dot center dot >= q(n)(G) denote the signless Laplacian eigenvalues of G. Ashraf and Tayfeh-Rezaie (2014) [3] showed that q(1)(G) + q(1)((G) over bar) <= 3n - 4, with equality holding if and only if G or (G) over bar is the star K-1,K- n-1. In this paper, we prove that q(2)(G) + q(2)((G) over bar) <= 2n - 4, where the equality holds if and only if G or (G) over bar is K-2, P-4 or C-4. Also, we discuss the following problem: for n >= 6, does q(2)(G) + q(2)((G) over bar) <= 2n - 5 always hold? We provide positive answers to this problem for the graphs with disconnected complements and the bipartite graphs, and determine the graphs attaining the bound. Moreover, we show that q(2)(G) + q(2)((G) over bar) >= n - 2, and the extremal graphs are also characterized. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:336 / 353
页数:18
相关论文
共 26 条
[1]   A NOTE ON THE NORDHAUS-GADDUM TYPE INEQUALITY TO THE SECOND LARGEST EIGENVALUE OF A GRAPH [J].
Abreu, Nair ;
Brondani, Andre E. ;
de Lima, Leonardo ;
Oliveira, Carla .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2017, 11 (01) :123-135
[2]  
[Anonymous], 1970, THESIS
[3]   A survey of Nordhaus-Gaddum type relations [J].
Aouchiche, Mustapha ;
Hansen, Pierre .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (4-5) :466-546
[4]  
Ashraf F, 2014, ELECTRON J COMB, V21
[5]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[6]   Some results on the Laplacian spread of a graph [J].
Chen, Xiaodan ;
Das, Kinkar Ch. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 505 :245-260
[7]   On a conjecture of V. Nikiforov [J].
Csikvari, Peter .
DISCRETE MATHEMATICS, 2009, 309 (13) :4522-4526
[8]   On conjectures involving second largest signless Laplacian eigenvalue of graphs [J].
Das, Kinkar Ch. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (11) :3018-3029
[9]   On the second largest eigenvalue of the signless Laplacian [J].
de Lima, Leonardo Silva ;
Nikiforov, Vladimir .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (03) :1215-1222
[10]  
Einollahzadeh M., ARXIV190102047MATHCO