Efficient nitric oxide reduction to ammonia on a metal-free electrocatalyst

被引:88
作者
Wu, Qian [1 ]
Wang, Hao [1 ]
Shen, Shiying [1 ]
Huang, Baibiao [1 ]
Dai, Ying [1 ]
Ma, Yandong [1 ]
机构
[1] Shandong Univ, Sch Phys, State Key Lab Crystal Mat, Shandanan Str 27, Jinan 250100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
SELECTIVE CATALYTIC-REDUCTION; NITROGEN REDUCTION; NITRATE REDUCTION; NO; PERSPECTIVES; OXIDATION; DESIGN; NH3;
D O I
10.1039/d0ta11209g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
NH3 synthesis and NO removal are two of the most attractive and challenging processes in electrochemistry. Current research efforts mainly focus on them separately, while the direct electrochemical reduction of NO to NH3 has been less explored. Herein, based on first-principles calculations, we propose a metal-free electrocatalyst, namely, P atom doped single-layer C2N, as a promising candidate system for achieving the direct electroreduction of NO to NH3. Particularly, double P doped C2N (2P@C2N) exhibits excellent catalytic activity and high selectivity, which correlates with the sp(3) hybridization of the P atom. Moreover, our microkinetic modeling analysis shows that the turnover frequency of NO reduction to NH3 on 2P@C2N is as large as 8.9 x 10(5) per s per site at 400 K, suggesting that it exhibits an ultra-fast reaction rate. Our study provides not only the first metal-free electrocatalyst for NO removal, but also an effective alternative avenue for ammonia synthesis.
引用
收藏
页码:5434 / 5441
页数:8
相关论文
共 49 条
[1]   Nitric oxide reduction and oxidation on stepped pt[n(111)x(111)] electrodes [J].
Beltramo, GL ;
Koper, MTM .
LANGMUIR, 2003, 19 (21) :8907-8915
[2]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[3]   Advances in Electrocatalytic N2 Reduction-Strategies to Tackle the Selectivity Challenge [J].
Chen, Gao-Feng ;
Ren, Shiyu ;
Zhang, Lili ;
Cheng, Hui ;
Luo, Yaru ;
Zhu, Kehan ;
Ding, Liang-Xin ;
Wang, Haihui .
SMALL METHODS, 2019, 3 (06)
[4]   Reversibility Iteration Method for Understanding Reaction Networks and for Solving Microkinetics in Heterogeneous Catalysis [J].
Chen, Jian-Fu ;
Mao, Yu ;
Wang, Hai-Feng ;
Hu, P. .
ACS CATALYSIS, 2016, 6 (10) :7078-7087
[5]   Beyond fossil fuel-driven nitrogen transformations [J].
Chen, Jingguang G. ;
Crooks, Richard M. ;
Seefeldt, Lance C. ;
Bren, Kara L. ;
Bullock, R. Morris ;
Darensbourg, Marcetta Y. ;
Holland, Patrick L. ;
Hoffman, Brian ;
Janik, Michael J. ;
Jones, Anne K. ;
Kanatzidis, Mercouri G. ;
King, Paul ;
Lancaster, Kyle M. ;
Lymar, Sergei V. ;
Pfromm, Peter ;
Schneider, William F. ;
Schrock, Richard R. .
SCIENCE, 2018, 360 (6391)
[6]   Surface Modification of Pt(100) for Electrocatalytic Nitrate Reduction to Dinitrogen in Alkaline Solution [J].
Chen, Ting ;
Li, Hongjiao ;
Ma, Houyi ;
Koper, Marc T. M. .
LANGMUIR, 2015, 31 (10) :3277-3281
[7]   Electroreduction of Nitrates, Nitrites, and Gaseous Nitrogen Oxides: A Potential Source of Ammonia in Dinitrogen Reduction Studies [J].
Choi, Jaecheol ;
Du, Hoang-Long ;
Nguyen, Cuong Ky ;
Suryanto, Bryan H. R. ;
Simonov, Alexandr N. ;
MacFarlane, Douglas R. .
ACS ENERGY LETTERS, 2020, 5 (06) :2095-2097
[8]   Atomistic Insights into Nitrogen-Cycle Electrochemistry: A Combined DFT and Kinetic Monte Carlo Analysis of NO Electrochemical Reduction on Pt(100) [J].
Chun, Hee-Joon ;
Apaja, Vesa ;
Clayborne, Andre ;
Honkala, Karoliina ;
Greeley, Jeffrey .
ACS CATALYSIS, 2017, 7 (06) :3869-3882
[9]   Mechanistic study on the electrocatalytic reduction of nitric oxide on transition-metal electrodes [J].
de Vooys, ACA ;
Koper, MTM ;
van Santen, RA ;
van Veen, JAR .
JOURNAL OF CATALYSIS, 2001, 202 (02) :387-394
[10]   Powering denitrification: the perspectives of electrocatalytic nitrate reduction [J].
Duca, Matteo ;
Koper, Marc T. M. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (12) :9726-9742