Electrostatically telescoping nanotube nonvolatile memory device

被引:47
作者
Kang, Jeong Won [1 ]
Jiang, Qing [1 ]
机构
[1] Univ Calif Riverside, Dept Mech Engn, Riverside, CA 92521 USA
关键词
D O I
10.1088/0957-4484/18/9/095705
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We propose a nonvolatile memory based on carbon nanotubes (CNTs) serving as the key building blocks for molecular-scale computers and investigate the dynamic operations of a double-walled CNT memory element by classical molecular dynamics simulations. The localized potential energy wells achieved from both the interwall van der Waals energy and CNT-metal binding energy make the bistability of the CNT positions and the electrostatic attractive forces induced by the voltage differences lead to the reversibility of this CNT memory. The material for the electrodes should be carefully chosen to achieve the nonvolatility of this memory. The kinetic energy of the CNT shuttle experiences several rebounds induced by the collisions of the CNT onto the metal electrodes, and this is critically important to the performance of such an electrostatically telescoping CNT memory because the collision time is sufficiently long to cause a delay of the state transition.
引用
收藏
页数:8
相关论文
共 40 条
[1]   Predicting trends in rate parameters for self-diffusion on FCC metal surfaces [J].
Agrawal, PM ;
Rice, BM ;
Thompson, DL .
SURFACE SCIENCE, 2002, 515 (01) :21-35
[2]   Solidification of gold nanoparticles in carbon nanotubes [J].
Arcidiacono, S ;
Walther, JH ;
Poulikakos, D ;
Passerone, D ;
Koumoutsakos, P .
PHYSICAL REVIEW LETTERS, 2005, 94 (10)
[3]   Theoretical and experimental investigations of three-terminal carbon nanotube relays [J].
Axelsson, S ;
Campbell, EEB ;
Jonsson, LM ;
Kinaret, J ;
Lee, SW ;
Park, YW ;
Sveningsson, M .
NEW JOURNAL OF PHYSICS, 2005, 7
[4]   EMPIRICAL POTENTIAL FOR HYDROCARBONS FOR USE IN SIMULATING THE CHEMICAL VAPOR-DEPOSITION OF DIAMOND FILMS [J].
BRENNER, DW .
PHYSICAL REVIEW B, 1990, 42 (15) :9458-9471
[5]   Fabrication of a nanoelectromechanical switch using a suspended carbon nanotube [J].
Cha, SN ;
Jang, JE ;
Choi, Y ;
Amaratunga, GAJ ;
Kang, DJ ;
Hasko, DG ;
Jung, JE ;
Kim, JM .
APPLIED PHYSICS LETTERS, 2005, 86 (08) :1-3
[6]   Nanoscale molecular-switch crossbar circuits [J].
Chen, Y ;
Jung, GY ;
Ohlberg, DAA ;
Li, XM ;
Stewart, DR ;
Jeppesen, JO ;
Nielsen, KA ;
Stoddart, JF ;
Williams, RS .
NANOTECHNOLOGY, 2003, 14 (04) :462-468
[7]   Aligned carbon nanotubes for nanoelectronics [J].
Choi, WB ;
Bae, E ;
Kang, D ;
Chae, S ;
Cheong, BH ;
Ko, JH ;
Lee, EM ;
Park, W .
NANOTECHNOLOGY, 2004, 15 (10) :S512-S516
[8]   Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes [J].
Cumings, J ;
Zettl, A .
SCIENCE, 2000, 289 (5479) :602-604
[9]   Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches [J].
Dequesnes, M ;
Rotkin, SV ;
Aluru, NR .
NANOTECHNOLOGY, 2002, 13 (01) :120-131
[10]   Carbon nanotube linear bearing nanoswitches [J].
Deshpande, V. V. ;
Chiu, H. -Y. ;
Postma, H. W. Ch. ;
Miko, C. ;
Forro, L. ;
Bockrath, M. .
NANO LETTERS, 2006, 6 (06) :1092-1095