Adaptive kernels in approximate filtering of state-space models

被引:1
|
作者
Dedecius, Kamil [1 ]
机构
[1] Czech Acad Sci, Inst Informat Theory & Automat, Pod Vodarenskou Vezi 1143-4, Prague 18208 8, Czech Republic
关键词
filtering; nonlinear filters; Bayesian filtering; sequential Monte Carlo; particle filter; approximate filtering; HIDDEN MARKOV-MODELS; BAYESIAN COMPUTATION; PARAMETER-ESTIMATION; PARTICLE; ALGORITHMS;
D O I
10.1002/acs.2739
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Standard Bayesian algorithms used for online filtering of states of hidden Markov models from noisy measurements assume an accurate knowledge of the measurement model in the form of a conditional probability density function. However, this knowledge is often unreachable in practice, and the used models are more or less misspecified, or it is too complex, making the resulting models intractable. This paper focuses on these issues from the particle filtering perspective. It adopts the principles of the approximate Bayesian filtering, where the particle weights are based on the (dis)similarity of the true measurements and the pseudo-measurements obtained by plugging the state particles directly into the measurement equation. Specifically, a new robust method for online tuning of the weighting kernel is proposed. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:938 / 952
页数:15
相关论文
共 50 条
  • [31] Parameter estimation in general state-space models using particle methods
    Arnaud Doucet
    Vladislav B. Tadić
    Annals of the Institute of Statistical Mathematics, 2003, 55 : 409 - 422
  • [32] On Particle Methods for Parameter Estimation in State-Space Models
    Kantas, Nikolas
    Doucet, Arnaud
    Singh, Sumeetpal S.
    Maciejowski, Jan
    Chopin, Nicolas
    STATISTICAL SCIENCE, 2015, 30 (03) : 328 - 351
  • [33] Improving Linear State-Space Models with Additional NIterations
    Gumussoy, Suat
    Ozdemir, Ahmet Arda
    McKelvey, Tomas
    Ljung, Lennart
    Gibanica, Mladen
    Singh, Rajiv
    IFAC PAPERSONLINE, 2018, 51 (15): : 341 - 346
  • [34] Biased Online Parameter Inference for State-Space Models
    Pierre Del Moral
    Ajay Jasra
    Yan Zhou
    Methodology and Computing in Applied Probability, 2017, 19 : 727 - 749
  • [35] Alternative EM Algorithms for Nonlinear State-space Models
    Wahlstrom, Johan
    Jalden, Joakim
    Skog, Isaac
    Handel, Peter
    2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 1260 - 1267
  • [36] Variational system identification for nonlinear state-space models
    Courts, Jarrad
    Wills, Adrian G.
    Schon, Thomas B.
    Ninness, Brett
    AUTOMATICA, 2023, 147
  • [37] Biased Online Parameter Inference for State-Space Models
    Del Moral, Pierre
    Jasra, Ajay
    Zhou, Yan
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2017, 19 (03) : 727 - 749
  • [38] A new look at state-space models for neural data
    Paninski, Liam
    Ahmadian, Yashar
    Ferreira, Daniel Gil
    Koyama, Shinsuke
    Rad, Kamiar Rahnama
    Vidne, Michael
    Vogelstein, Joshua
    Wu, Wei
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2010, 29 (1-2) : 107 - 126
  • [39] Sparse Bayesian Estimation of Parameters in Linear-Gaussian State-Space Models
    Cox, Benjamin
    Elvira, Victor
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 1922 - 1937
  • [40] On Disturbance State-Space Models and the Particle Marginal Metropolis-Hastings Sampler
    Murray, Lawrence M.
    Jones, Emlyn M.
    Parslow, John
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2013, 1 (01): : 494 - 521