Ultra-High Surface Area Nitrogen-Doped Carbon Aerogels Derived From a Schiff-Base Porous Organic Polymer Aerogel for CO2 Storage and Supercapacitors

被引:181
作者
Li, Huimin [1 ]
Li, Jiahuan [1 ]
Thomas, Arne [2 ]
Liao, Yaozu [1 ]
机构
[1] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
[2] Tech Univ Berlin, Dept Chem Funct Mat, D-10623 Berlin, Germany
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
carbon capture; nitrogen-doped carbon aerogels; porous carbons; supercapacitors; OXYGEN REDUCTION; FACILE SYNTHESIS; CAPTURE; ADSORBENTS; NANOSHEETS; TRIAZINE; RAMAN; HEAT;
D O I
10.1002/adfm.201904785
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nitrogen-doped carbon aerogels (NCAs) have received great attention for a wide range of applications, from thermal electronics to waste water purification, heavy metal or gas adsorption, energy storage, and catalyst supports. Herein NCAs are developed via the synthesis of a Schiff-base porous organic polymer aerogel followed by pyrolysis. By controlling the pyrolysis temperature, the polymer aerogel can be simply converted into porous NCAs with a low bulk density (5 mg cm(-3)), high surface area (2356 m(2) g(-1)), and high bulk porosity (70%). The NCAs containing 1.8-5.3 wt% N atoms exhibit remarkable CO2 uptake capacities (6.1 mmol g(-1) at 273 K and 1 bar, 33.1 mmol g(-1) at 323 K and 30 bar) and high ideal adsorption solution theory selectivity (47.8) at ambient pressure. Supercapacitors fabricated with NCAs display high specific capacitance (300 F g(-1) at 0.5 A g(-1)), fast rate (charge to 221 F g(-1) within only 17 s), and high stability (retained >98% capacity after 5000 cycles). Asymmetric supercapacitors assembled with NCAs also show high energy density and power density with maximal values of 30.5 Wh kg(-1) and 7088 W kg(-1), respectively. The outstanding CO2 uptake and energy storage abilities are attributed to the ultra-high surface area, N-doping, conductivity, and rigidity of NCA frameworks.
引用
收藏
页数:9
相关论文
共 45 条
[41]   Conjugated microporous polymers: design, synthesis and application [J].
Xu, Yanhong ;
Jin, Shangbin ;
Xu, Hong ;
Nagai, Atsushi ;
Jiang, Donglin .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (20) :8012-8031
[42]   Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy [J].
Yang, Dongxing ;
Velamakanni, Aruna ;
Bozoklu, Guelay ;
Park, Sungjin ;
Stoller, Meryl ;
Piner, Richard D. ;
Stankovich, Sasha ;
Jung, Inhwa ;
Field, Daniel A. ;
Ventrice, Carl A., Jr. ;
Ruoff, Rodney S. .
CARBON, 2009, 47 (01) :145-152
[43]  
Yu S., 2018, ANGEW CHEM, V130, P7203, DOI [DOI 10.1002/ANGE.201802753, 10.1002/ange.201802753]
[44]   Mechanically robust and highly compressible electrochemical supercapacitors from nitrogen-doped carbon aerogels [J].
Zhang, Xiaofang ;
Zhao, Jiangqi ;
He, Xu ;
Li, Qingye ;
Ao, Chenghong ;
Xia, Tian ;
Zhang, Wei ;
Lu, Canhui ;
Deng, Yulin .
CARBON, 2018, 127 :236-244
[45]   Novel porous carbon materials with ultrahigh nitrogen contents for selective CO2 capture [J].
Zhao, Yunfeng ;
Zhao, Lan ;
Yao, Ke Xin ;
Yang, Yang ;
Zhang, Qiang ;
Han, Yu .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (37) :19726-19731