Ultra-High Surface Area Nitrogen-Doped Carbon Aerogels Derived From a Schiff-Base Porous Organic Polymer Aerogel for CO2 Storage and Supercapacitors

被引:180
作者
Li, Huimin [1 ]
Li, Jiahuan [1 ]
Thomas, Arne [2 ]
Liao, Yaozu [1 ]
机构
[1] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
[2] Tech Univ Berlin, Dept Chem Funct Mat, D-10623 Berlin, Germany
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
carbon capture; nitrogen-doped carbon aerogels; porous carbons; supercapacitors; OXYGEN REDUCTION; FACILE SYNTHESIS; CAPTURE; ADSORBENTS; NANOSHEETS; TRIAZINE; RAMAN; HEAT;
D O I
10.1002/adfm.201904785
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nitrogen-doped carbon aerogels (NCAs) have received great attention for a wide range of applications, from thermal electronics to waste water purification, heavy metal or gas adsorption, energy storage, and catalyst supports. Herein NCAs are developed via the synthesis of a Schiff-base porous organic polymer aerogel followed by pyrolysis. By controlling the pyrolysis temperature, the polymer aerogel can be simply converted into porous NCAs with a low bulk density (5 mg cm(-3)), high surface area (2356 m(2) g(-1)), and high bulk porosity (70%). The NCAs containing 1.8-5.3 wt% N atoms exhibit remarkable CO2 uptake capacities (6.1 mmol g(-1) at 273 K and 1 bar, 33.1 mmol g(-1) at 323 K and 30 bar) and high ideal adsorption solution theory selectivity (47.8) at ambient pressure. Supercapacitors fabricated with NCAs display high specific capacitance (300 F g(-1) at 0.5 A g(-1)), fast rate (charge to 221 F g(-1) within only 17 s), and high stability (retained >98% capacity after 5000 cycles). Asymmetric supercapacitors assembled with NCAs also show high energy density and power density with maximal values of 30.5 Wh kg(-1) and 7088 W kg(-1), respectively. The outstanding CO2 uptake and energy storage abilities are attributed to the ultra-high surface area, N-doping, conductivity, and rigidity of NCA frameworks.
引用
收藏
页数:9
相关论文
共 45 条
[1]   Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification [J].
Bae, Youn-Sang ;
Farha, Omar K. ;
Hupp, Joseph T. ;
Snurr, Randall Q. .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (15) :2131-2134
[2]   Stability studies of polypyrole- derived carbon based symmetric supercapacitor via potentiostatic floating test [J].
Bello, A. ;
Barzegar, F. ;
Madito, M. J. ;
Momodu, D. Y. ;
Khaleed, A. A. ;
Masikhwa, T. M. ;
Dangbegnon, J. K. ;
Manyala, N. .
ELECTROCHIMICA ACTA, 2016, 213 :107-114
[3]   Porous Organic Polymers for CO2 Storage and Conversion Reactions [J].
Bhanja, Piyali ;
Modak, Arindam ;
Bhaumik, Asim .
CHEMCATCHEM, 2019, 11 (01) :244-257
[4]   From waste Coca Cola® to activated carbons with impressive capabilities for CO2 adsorption and supercapacitors [J].
Boyjoo, Yash ;
Cheng, Yi ;
Zhong, Hua ;
Tian, Hao ;
Pan, Jian ;
Pareek, Vishnu K. ;
Jiang, San Ping ;
Lamonier, Jean-Francois ;
Jaroniec, Mietek ;
Liu, Jian .
CARBON, 2017, 116 :490-499
[5]   Trends and challenges for microporous polymers [J].
Chaoui, Nicolas ;
Trunk, Matthias ;
Dawson, Robert ;
Schmidt, Johannes ;
Thomas, Arne .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (11) :3302-3321
[6]   Carbon-Based Adsorbents for Postcombustion CO2 Capture: A Critical Review [J].
Creamer, Anne Elise ;
Gao, Bin .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2016, 50 (14) :7276-7289
[7]   Advancesn in CO2 capture technology -: The US Department of Energy's Carbon Sequestration Program [J].
Figueroa, Jose D. ;
Fout, Timothy ;
Plasynski, Sean ;
McIlvried, Howard ;
Srivastava, Rameshwar D. .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2008, 2 (01) :9-20
[8]   The fabrication and characterization of carbon aerogels by gelation and supercritical drying in isopropanol [J].
Fu, RW ;
Zheng, B ;
Liu, J ;
Dresselhaus, MS ;
Dresselhaus, G ;
Satcher, JH ;
Baumann, TE .
ADVANCED FUNCTIONAL MATERIALS, 2003, 13 (07) :558-562
[9]   A self-assembled hierarchical nanostructure comprising carbon spheres and graphene nanosheets for enhanced supercapacitor performance [J].
Guo, Chun Xian ;
Li, Chang Ming .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (11) :4504-4507
[10]   Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts [J].
Guo, Donghui ;
Shibuya, Riku ;
Akiba, Chisato ;
Saji, Shunsuke ;
Kondo, Takahiro ;
Nakamura, Junji .
SCIENCE, 2016, 351 (6271) :361-365