Symbolic Sequences and Tsallis Entropy

被引:5
|
作者
Ribeiro, H. V. [1 ,2 ]
Lenzi, E. K. [1 ,2 ]
Mendes, R. S. [1 ,2 ]
Mendes, G. A. [3 ,4 ]
da Silva, L. R. [3 ,4 ]
机构
[1] Univ Estadual Maringa, Dept Fis, BR-87020900 Maringa, Parana, Brazil
[2] Univ Estadual Maringa, Natl Inst Sci & Technol Complex Syst, BR-87020900 Maringa, Parana, Brazil
[3] Univ Fed Rio Grande do Norte, Dept Fis, BR-59072970 Natal, RN, Brazil
[4] Univ Fed Rio Grande do Norte, Natl Inst Sci & Technol Complex Syst, BR-59072970 Natal, RN, Brazil
关键词
Symbolic sequences; Long-range correlations; Tsallis entropy; Non-usual diffusion; LONG-RANGE CORRELATIONS; DYNAMICS;
D O I
10.1590/S0103-97332009000400018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We address this work to investigate symbolic sequences with long-range correlations by using computational simulation. We analyze sequences with two, three and four symbols that could be repeated l times, with the probability distribution p(l) proportional to 1/l(mu). For these sequences, we verified that the usual entropy increases more slowly when the symbols are correlated and the Tsallis entropy exhibits, for a suitable choice of q, a linear behavior. We also study the chain as a random walk-like process and observe a nonusual diffusive behavior depending on the values of the parameter mu.
引用
收藏
页码:444 / 447
页数:4
相关论文
共 50 条
  • [41] Microcanonical equations obtained from the Tsallis entropy
    Carrete, J.
    Varela, L. M.
    Gallego, L. J.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (27) : 6752 - 6758
  • [42] Pattern Recognition via PCNN and Tsallis Entropy
    Zhang, YuDong
    Wu, LeNan
    SENSORS, 2008, 8 (11): : 7518 - 7529
  • [43] TSALLIS ENTROPY BASED CONTRAST ENHANCEMENT OF MICROCALCIFICATIONS
    Mohanalin, J.
    Kalra, Prem Kumar
    Kumar, Nirmal
    PROCEEDINGS OF THE 2009 INTERNATIONAL CONFERENCE ON SIGNAL ACQUISITION AND PROCESSING, 2009, : 3 - +
  • [44] Tsallis entropy of dynamical systems - a general scheme
    Ebrahimzadeh, Abolfazl
    Giski, Zahra Eslami
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 35 (01) : 1119 - 1126
  • [45] A quantile approach of Tsallis entropy for order statistics
    Kumar, Vikas
    Rekha
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 503 : 916 - 928
  • [46] Distributivity and deformation of the reals from Tsallis entropy
    Kalogeropoulos, Nikos
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (04) : 1120 - 1127
  • [47] Further Properties of Tsallis Entropy and Its Application
    Alomani, Ghadah
    Kayid, Mohamed
    ENTROPY, 2023, 25 (02)
  • [48] Generalized uncertainty relations of Tsallis entropy on FrFT
    Xu Guanlei
    Xu Xiaogang
    Wang Xiaotong
    Signal, Image and Video Processing, 2021, 15 : 9 - 16
  • [49] Generalized Maxwell Distribution in the Tsallis Entropy Formalism
    Bakiev, T. N.
    Nakashidze, D. V.
    Savchenko, A. M.
    Semenov, K. M.
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2022, 77 (05) : 728 - 740
  • [50] Friedmann equations with the generalized logarithmic modification of Barrow entropy and Tsallis entropy
    Mohammadi, H.
    Salehi, A.
    PHYSICS LETTERS B, 2023, 839