Symbolic Sequences and Tsallis Entropy

被引:5
|
作者
Ribeiro, H. V. [1 ,2 ]
Lenzi, E. K. [1 ,2 ]
Mendes, R. S. [1 ,2 ]
Mendes, G. A. [3 ,4 ]
da Silva, L. R. [3 ,4 ]
机构
[1] Univ Estadual Maringa, Dept Fis, BR-87020900 Maringa, Parana, Brazil
[2] Univ Estadual Maringa, Natl Inst Sci & Technol Complex Syst, BR-87020900 Maringa, Parana, Brazil
[3] Univ Fed Rio Grande do Norte, Dept Fis, BR-59072970 Natal, RN, Brazil
[4] Univ Fed Rio Grande do Norte, Natl Inst Sci & Technol Complex Syst, BR-59072970 Natal, RN, Brazil
关键词
Symbolic sequences; Long-range correlations; Tsallis entropy; Non-usual diffusion; LONG-RANGE CORRELATIONS; DYNAMICS;
D O I
10.1590/S0103-97332009000400018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We address this work to investigate symbolic sequences with long-range correlations by using computational simulation. We analyze sequences with two, three and four symbols that could be repeated l times, with the probability distribution p(l) proportional to 1/l(mu). For these sequences, we verified that the usual entropy increases more slowly when the symbols are correlated and the Tsallis entropy exhibits, for a suitable choice of q, a linear behavior. We also study the chain as a random walk-like process and observe a nonusual diffusive behavior depending on the values of the parameter mu.
引用
收藏
页码:444 / 447
页数:4
相关论文
共 50 条
  • [31] Generalized uncertainty relations of Tsallis entropy on FrFT
    Xu Guanlei
    Xu Xiaogang
    Wang Xiaotong
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (01) : 9 - 16
  • [32] QUANTUM DISCORD DERIVED FROM TSALLIS ENTROPY
    Jurkowski, Jacek
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2013, 11 (01)
  • [33] Generalized Maxwell Distribution in the Tsallis Entropy Formalism
    T. N. Bakiev
    D. V. Nakashidze
    A. M. Savchenko
    K. M. Semenov
    Moscow University Physics Bulletin, 2022, 77 : 728 - 740
  • [34] Tsallis Entropy, Likelihood, and the Robust Seismic Inversion
    de Lima, Igo Pedro
    da Silva, Sergio Luiz E. F.
    Corso, Gilberto
    de Araujo, Joao M.
    ENTROPY, 2020, 22 (04)
  • [35] TSALLIS ENTROPY THEORY FOR DERIVATION OF INFILTRATION EQUATIONS
    Singh, V. P.
    TRANSACTIONS OF THE ASABE, 2010, 53 (02) : 447 - 463
  • [36] Tsallis Entropy Extraction for Mammographic Region Classification
    Alcantara, Rafaela
    Ferreira Junior, Perfilino
    Ramos, Aline
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2016, 2017, 10125 : 451 - 458
  • [37] The effects of the Tsallis entropy in the proton internal pressure
    Campos, S. D.
    Amarante, A. M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2020, 35 (19):
  • [38] Coherence as entropy increment for Tsallis and Renyi entropies
    Vershynina, Anna
    QUANTUM INFORMATION PROCESSING, 2023, 22 (02)
  • [39] Order Properties Concerning Tsallis Residual Entropy
    Sfetcu, Razvan-Cornel
    Preda, Vasile
    MATHEMATICS, 2024, 12 (03)
  • [40] Some properties of cumulative Tsallis entropy of order
    Rajesh, G.
    Sunoj, S. M.
    STATISTICAL PAPERS, 2019, 60 (03) : 583 - 593