Symbolic Sequences and Tsallis Entropy

被引:5
|
作者
Ribeiro, H. V. [1 ,2 ]
Lenzi, E. K. [1 ,2 ]
Mendes, R. S. [1 ,2 ]
Mendes, G. A. [3 ,4 ]
da Silva, L. R. [3 ,4 ]
机构
[1] Univ Estadual Maringa, Dept Fis, BR-87020900 Maringa, Parana, Brazil
[2] Univ Estadual Maringa, Natl Inst Sci & Technol Complex Syst, BR-87020900 Maringa, Parana, Brazil
[3] Univ Fed Rio Grande do Norte, Dept Fis, BR-59072970 Natal, RN, Brazil
[4] Univ Fed Rio Grande do Norte, Natl Inst Sci & Technol Complex Syst, BR-59072970 Natal, RN, Brazil
关键词
Symbolic sequences; Long-range correlations; Tsallis entropy; Non-usual diffusion; LONG-RANGE CORRELATIONS; DYNAMICS;
D O I
10.1590/S0103-97332009000400018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We address this work to investigate symbolic sequences with long-range correlations by using computational simulation. We analyze sequences with two, three and four symbols that could be repeated l times, with the probability distribution p(l) proportional to 1/l(mu). For these sequences, we verified that the usual entropy increases more slowly when the symbols are correlated and the Tsallis entropy exhibits, for a suitable choice of q, a linear behavior. We also study the chain as a random walk-like process and observe a nonusual diffusive behavior depending on the values of the parameter mu.
引用
收藏
页码:444 / 447
页数:4
相关论文
共 50 条
  • [21] Tsallis Entropy in MV-Algebras
    Barbieri, Giuseppina Gerarda
    Lenzi, Giacomo
    MATHEMATICS, 2024, 12 (22)
  • [22] Image thresholding using Tsallis entropy
    de Albuquerque, MP
    Esquef, IA
    Mello, ARG
    de Albuquerque, MP
    PATTERN RECOGNITION LETTERS, 2004, 25 (09) : 1059 - 1065
  • [23] QUADRATIC TSALLIS ENTROPY BIAS AND GENERALIZED MAXIMUM ENTROPY MODELS
    Hou, Yuexian
    Wang, Bo
    Song, Dawei
    Cao, Xiaochun
    Li, Wenjie
    COMPUTATIONAL INTELLIGENCE, 2014, 30 (02) : 233 - 262
  • [24] Memory order decomposition of symbolic sequences
    Alvarez-Rodriguez, Unai
    Latora, Vito
    PHYSICAL REVIEW E, 2021, 104 (01)
  • [25] The Application of Tsallis Entropy Based Self-Adaptive Algorithm for Multi-Threshold Image Segmentation
    Zhang, Kailong
    He, Mingyue
    Dong, Lijie
    Ou, Congjie
    ENTROPY, 2024, 26 (09)
  • [26] Entropy and long-range correlations in DNA sequences
    Melnik, S. S.
    Usatenko, O. V.
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2014, 53 : 26 - 31
  • [27] A method of evaluating importance of nodes in complex network based on Tsallis entropy
    Yang Song-Qing
    Jiang Yuan
    Tong Tian-Chi
    Yan Yu-Wei
    Gan Ge-Sheng
    ACTA PHYSICA SINICA, 2021, 70 (21)
  • [28] Analysis of financial stock markets through the multiscale cross-distribution entropy based on the Tsallis entropy
    Wang, Yuanyuan
    Shang, Pengjian
    NONLINEAR DYNAMICS, 2018, 94 (02) : 1361 - 1376
  • [29] On the construction of complex networks with optimal Tsallis entropy
    Ochiai, T.
    Nacher, J. C.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (23) : 4887 - 4892
  • [30] Holographic dark energy through Tsallis entropy
    Saridakis, Emmanuel N.
    Bamba, Kazuharu
    Myrzakulov, R.
    Anagnostopoulos, Fotios K.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (12):