Symbolic Sequences and Tsallis Entropy

被引:5
|
作者
Ribeiro, H. V. [1 ,2 ]
Lenzi, E. K. [1 ,2 ]
Mendes, R. S. [1 ,2 ]
Mendes, G. A. [3 ,4 ]
da Silva, L. R. [3 ,4 ]
机构
[1] Univ Estadual Maringa, Dept Fis, BR-87020900 Maringa, Parana, Brazil
[2] Univ Estadual Maringa, Natl Inst Sci & Technol Complex Syst, BR-87020900 Maringa, Parana, Brazil
[3] Univ Fed Rio Grande do Norte, Dept Fis, BR-59072970 Natal, RN, Brazil
[4] Univ Fed Rio Grande do Norte, Natl Inst Sci & Technol Complex Syst, BR-59072970 Natal, RN, Brazil
关键词
Symbolic sequences; Long-range correlations; Tsallis entropy; Non-usual diffusion; LONG-RANGE CORRELATIONS; DYNAMICS;
D O I
10.1590/S0103-97332009000400018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We address this work to investigate symbolic sequences with long-range correlations by using computational simulation. We analyze sequences with two, three and four symbols that could be repeated l times, with the probability distribution p(l) proportional to 1/l(mu). For these sequences, we verified that the usual entropy increases more slowly when the symbols are correlated and the Tsallis entropy exhibits, for a suitable choice of q, a linear behavior. We also study the chain as a random walk-like process and observe a nonusual diffusive behavior depending on the values of the parameter mu.
引用
收藏
页码:444 / 447
页数:4
相关论文
共 50 条
  • [1] Entropy estimation of very short symbolic sequences
    Lesne, Annick
    Blanc, Jean-Luc
    Pezard, Laurent
    PHYSICAL REVIEW E, 2009, 79 (04):
  • [2] On uniqueness theorems for Tsallis entropy and Tsallis relative entropy
    Furuichi, S
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (10) : 3638 - 3645
  • [3] On Conditional Tsallis Entropy
    Teixeira, Andreia
    Souto, Andre
    Antunes, Luis
    ENTROPY, 2021, 23 (11)
  • [4] Measuring the complexity of complex network by Tsallis entropy
    Wen, Tao
    Jiang, Wen
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 526
  • [5] Text mining by Tsallis entropy
    Jamaati, Maryam
    Mehri, Ali
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 490 : 1368 - 1376
  • [6] Projections maximizing Tsallis entropy
    Harremoes, Peter
    COMPLEXITY, METASTABILITY AND NONEXTENSIVITY, 2007, 965 : 90 - 95
  • [7] Temperature of nonextensive systems: Tsallis entropy as Clausius entropy
    Abe, Sumiyoshi
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 368 (02) : 430 - 434
  • [8] Projective Power Entropy and Maximum Tsallis Entropy Distributions
    Eguchi, Shinto
    Komori, Osamu
    Kato, Shogo
    ENTROPY, 2011, 13 (10): : 1746 - 1764
  • [9] Some properties of cumulative Tsallis entropy
    Cali, Camilla
    Longobardi, Maria
    Ahmadi, Jafar
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 486 : 1012 - 1021
  • [10] TSALLIS ENTROPY COMPOSITION AND THE HEISENBERG GROUP
    Kalogeropoulos, Nikos
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2013, 10 (07)