Discrete Multi-graph Hashing for Large-Scale Visual Search

被引:76
作者
Xiang, Lingyun [1 ,2 ,3 ]
Shen, Xiaobo [4 ]
Qin, Jiaohua [5 ]
Hao, Wei [6 ]
机构
[1] Changsha Univ Sci & Technol, Hunan Prov Key Lab Intelligent Proc Big Data Tran, Changsha 410114, Hunan, Peoples R China
[2] Changsha Univ Sci & Technol, Sch Comp & Commun Engn, Changsha 410114, Hunan, Peoples R China
[3] Changsha Univ Sci & Technol, Hunan Prov Key Lab Smart Roadway & Cooperat Vehic, Changsha 410114, Hunan, Peoples R China
[4] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
[5] Cent South Univ Forestry & Technol, Coll Comp Sci & Informat Technol, Changsha 410004, Hunan, Peoples R China
[6] Changsha Univ Sci & Technol, Sch Traff & Transportat Engn, Changsha 410114, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Hashing; Multi-graph; Multi-view data; Retrieval;
D O I
10.1007/s11063-018-9892-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hashing has become a promising technique to be applied to the large-scale visual retrieval tasks. Multi-view data has multiple views, providing more comprehensive information. The challenges of using hashing to handle multi-view data lie in two aspects: (1) How to integrate multiple views effectively? (2) How to reduce the distortion error in the quantization stage? In this paper, we propose a novel hashing method, called discrete multi-graph hashing (DMGH), to address the above challenges. DMGH uses a multi-graph learning technique to fuse multiple views, and adaptively learns the weights of each view. In addition, DMGH explicitly minimizes the distortion errors by carefully designing a quantization regularization term. An alternative algorithm is developed to solve the proposed optimization problem. The optimization algorithm is very efficient due to the low-rank property of the anchor graph. The experiments on three large-scale datasets demonstrate the proposed method outperforms the existing multi-view hashing methods.
引用
收藏
页码:1055 / 1069
页数:15
相关论文
共 37 条
[21]   A GENERALIZED SOLUTION OF ORTHOGONAL PROCRUSTE PROBLEM [J].
SCHONEMA.PH .
PSYCHOMETRIKA, 1966, 31 (01) :1-1
[22]   Unsupervised Deep Hashing with Similarity-Adaptive and Discrete Optimization [J].
Shen, Fumin ;
Xu, Yan ;
Liu, Li ;
Yang, Yang ;
Huang, Zi ;
Shen, Heng Tao .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (12) :3034-3044
[23]   Asymmetric Binary Coding for Image Search [J].
Shen, Fumin ;
Yang, Yang ;
Liu, Li ;
Liu, Wei ;
Tao, Dacheng ;
Shen, Heng Tao .
IEEE TRANSACTIONS ON MULTIMEDIA, 2017, 19 (09) :2022-2032
[24]   A Fast Optimization Method for General Binary Code Learning [J].
Shen, Fumin ;
Zhou, Xiang ;
Yang, Yang ;
Song, Jingkuan ;
Shen, Heng Tao ;
Tao, Dacheng .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (12) :5610-5621
[25]  
Shen FM, 2015, PROC CVPR IEEE, P37, DOI 10.1109/CVPR.2015.7298598
[26]  
Shen X, 2017, IEEE T CYBERNETICS, V47, P1
[27]   Multiview Discrete Hashing for Scalable Multimedia Search [J].
Shen, Xiaobo ;
Shen, Fumin ;
Liu, Li ;
Yuan, Yun-Hao ;
Liu, Weiwei ;
Sun, Quan-Sen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2018, 9 (05)
[28]   Multilabel Prediction via Cross-View Search [J].
Shen, Xiaobo ;
Liu, Weiwei ;
Tsang, Ivor W. ;
Sun, Quan-Sen ;
Ong, Yew-Soon .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (09) :4324-4338
[29]   Multi-view Latent Hashing for Efficient Multimedia Search [J].
Shen, Xiaobo ;
Shen, Fumin ;
Sun, Quan-Sen ;
Yuan, Yun-Hao .
MM'15: PROCEEDINGS OF THE 2015 ACM MULTIMEDIA CONFERENCE, 2015, :831-834
[30]  
Song Y. Yang, 2013, P ACM SIGMOD INT C M, P785