Deep Reinforcement Learning for Intelligent Reflecting Surfaces: Towards Standalone Operation

被引:98
作者
Taha, Abdelrahman [1 ]
Zhang, Yu [1 ]
Mismar, Faris B. [2 ]
Alkhateeb, Ahmed [1 ]
机构
[1] Arizona State Univ, Tempe, AZ 85281 USA
[2] Univ Texas Austin, Austin, TX 78712 USA
来源
PROCEEDINGS OF THE 21ST IEEE INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC2020) | 2020年
关键词
reconfigurable intelligent surface; large intelligent surface; intelligent reflecting surface; smart reflect-array; beamforming; deep reinforcement learning;
D O I
10.1109/spawc48557.2020.9154301
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The promising coverage and spectral efficiency gains of intelligent reflecting surfaces (IRSs) are attracting increasing interest. To adopt these surfaces in practice, however, several challenges need to be addressed. One of these main challenges is how to configure the reflecting coefficients on these passive surfaces without requiring massive channel estimation or beam training overhead. Earlier work suggested leveraging supervised learning tools to predict the IRS reflection matrices. While this approach has the potential of reducing the beam training overhead, it requires collecting large datasets for training the neural network models. In this paper, we propose a novel deep reinforcement learning framework for predicting the IRS reflection matrices with minimal beam training overhead. Simulation results show that the proposed online learning framework can converge to the optimal rate that assumes perfect channel knowledge. This represents an important step towards realizing a standalone IRS operation, where the surface configures itself without any control from the infrastructure.
引用
收藏
页数:5
相关论文
共 15 条
[1]   Contribution of the Zubair source rocks to the generation and expulsion of oil to the reservoirs of the Mesopotamian Basin, Southern Iraq [J].
Al-Khafaji, Amer Jassim ;
Sadooni, Fadhil ;
Hindi, Mohammed Hadi .
PETROLEUM SCIENCE AND TECHNOLOGY, 2019, 37 (08) :940-949
[2]   Deep Learning Coordinated Beamforming for Highly-Mobile Millimeter Wave Systems [J].
Alkhateeb, Ahmed ;
Alex, Sam ;
Varkey, Paul ;
Li, Ying ;
Qu, Qi ;
Tujkovic, Djordje .
IEEE ACCESS, 2018, 6 :37328-37348
[3]   Wireless Communications Through Reconfigurable Intelligent Surfaces [J].
Basar, Ertugrul ;
Di Renzo, Marco ;
De Rosny, Julien ;
Debbah, Merouane ;
Alouini, Mohamed-Slim ;
Zhang, Rui .
IEEE ACCESS, 2019, 7 :116753-116773
[4]  
Chen J., 2019, ARXIV190606578
[5]   Deep Channel Learning for Large Intelligent Surfaces Aided mm-Wave Massive MIMO Systems [J].
Elbir, Ahmet M. ;
Papazafeiropoulos, Anastasios ;
Kourtessis, Pandelis ;
Chatzinotas, Symeon .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (09) :1447-1451
[6]  
Huang C., 2019, ARXIV191112296
[7]   Instantaneous Amplitude-Frequency Feature Extraction for Rotor Fault Based on BEMD and Hilbert Transform [J].
Huang, Chuanjin ;
Song, Haijun ;
Lei, Wenping ;
Niu, Zhanya ;
Meng, Yajun .
SHOCK AND VIBRATION, 2019, 2019
[8]  
Jensen T. L., 2019, OPTIMAL CHANNEL ESTI
[9]   Deep Reinforcement Learning for 5G Networks: Joint Beamforming, Power Control, and Interference Coordination [J].
Mismar, Faris B. ;
Evans, Brian L. ;
Alkhateeb, Ahmed .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (03) :1581-1592
[10]   Human-level control through deep reinforcement learning [J].
Mnih, Volodymyr ;
Kavukcuoglu, Koray ;
Silver, David ;
Rusu, Andrei A. ;
Veness, Joel ;
Bellemare, Marc G. ;
Graves, Alex ;
Riedmiller, Martin ;
Fidjeland, Andreas K. ;
Ostrovski, Georg ;
Petersen, Stig ;
Beattie, Charles ;
Sadik, Amir ;
Antonoglou, Ioannis ;
King, Helen ;
Kumaran, Dharshan ;
Wierstra, Daan ;
Legg, Shane ;
Hassabis, Demis .
NATURE, 2015, 518 (7540) :529-533