Floquet's Theorem and Stability of Periodic Solitary Waves

被引:30
作者
Neves, Aloisio [1 ]
机构
[1] Univ Estadual Campinas, Dept Matemat, IMECC, BR-13083970 Campinas, SP, Brazil
关键词
Hill's operator; Spectrum; Periodic potential; Nonlinear stability;
D O I
10.1007/s10884-009-9143-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the spectrum the Hill operator L(y) = -y '' + Q(x) y in L-per(2)[0, pi]. We show that the eigenvalues of L can be characterized by knowing one of its eigenfunctions. Applications are given to nonlinear stability of a class of periodic problems.
引用
收藏
页码:555 / 565
页数:11
相关论文
共 11 条
[1]  
AKHIEZER NI, 1990, MATH MONOGRAPHS, V79
[2]  
ANGULO J, 2006, ADV DIFFERENTIAL EQU, V11, P1321
[3]  
Byrd PF., 1954, Handbook of elliptic integrals for engineers and scientist
[4]   Orbital stability of periodic waves for the nonlinear Schrodinger equation [J].
Gallay, Thierry ;
Haragus, Mariana .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2007, 19 (04) :825-865
[5]   STABILITY THEORY OF SOLITARY WAVES IN THE PRESENCE OF SYMMETRY .2. [J].
GRILLAKIS, M ;
SHATAH, J ;
STRAUSS, W .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 94 (02) :308-348
[6]   STABILITY THEORY OF SOLITARY WAVES IN THE PRESENCE OF SYMMETRY .1. [J].
GRILLAKIS, M ;
SHATAH, J ;
STRAUSS, W .
JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 74 (01) :160-197
[7]  
Haupt O, 1915, MATH ANN, V76, P67
[8]  
Lopes O, 2002, DISCRETE CONT DYN S, V8, P115
[9]  
MAGNUS W, 1966, INTERSIENCE TRACTS P, V20
[10]   Isoinertial family of operators and convergence of KdV cnoidal waves to solitons [J].
Neves, Aloisio .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (04) :875-886