Thermally crosslinked sulfonated polybenzimidazole membranes and their performance in high temperature polymer electrolyte fuel cells

被引:54
作者
Krishnan, N. Nambi [1 ,5 ]
Konovalova, Anastasiia [1 ,2 ]
Aili, David [3 ]
Li, Qingfeng [3 ]
Park, Hyun Seo [1 ]
Jang, Jong Hyun [1 ]
Kim, Hyoung-Juhn [1 ]
Henkensmeier, Dirk [1 ,2 ,4 ]
机构
[1] KIST, Ctr Hydrogen & Fuel Cell Res, Seoul 02792, South Korea
[2] Univ Sci & Technol, KIST Sch, Div Energy & Environm Technol, Seoul 02792, South Korea
[3] Tech Univ Denmark, Dept Energy Convers & Storage, Elektrovej, Bldg 375, DK-2800 Lyngby, Denmark
[4] Korea Univ, Green Sch, Seoul 02841, South Korea
[5] DLR Inst Networked Energy Syst, D-26129 Oldenburg, Germany
关键词
High temperature polymer electrolyte fuel cell (HT PEMFC); Sulfonated polybenzimidazole; Thermal crosslinking; Stability; High current density; HT-PEFC; SIDE-GROUPS; MIGRATION;
D O I
10.1016/j.memsci.2019.117218
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The degradation pathway of phosphoric acid doped polybenzimidazole membranes in high temperature polymer electrolyte membrane fuel cells depends on the acid contents. If it is high, creep is discussed as the main reason. If it is low (membranes prepared by solvent evaporation and post-doping), the main cause may be loss of acid due to evaporation. The net transport of acid to the anode side at high current densities should also lead to local softening of the membrane, which could be mitigated by crosslinking the membrane. Here we show that sulfonated para-polybenzimidazole membranes can be stabilized by curing at 350 degrees C. In contrast to meta-polybenzimidazole and sulfonated para-polybenzimidazole, crosslinked sulfonated para-polybenzimidazole is insoluble in dimethylacetamide at room temperature and phosphoric acid at 160 degrees C. At 160 degrees C and 5% relative humidity the conductivity of crosslinked sulfonated para-polybenzimidazole and meta-polybenzimidazole is 214 mS cm(-1) and 147 mS cm(-1), respectively. At 600 mA cm(-2), the voltage decay rate is 16 mu V h(-1), much lower than published for commercial meta-polybenzimidazole (308 mu V h(-1)). Furthermore, the average voltage at 600 mA cm(-2) is 523 mV, while a previously published cured meta-polybenzimidazole membrane only reaches 475 mV.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Sulfonated Polybenzimidazoles for High Temperature PEM Fuel Cells
    Mader, Jordan A.
    Benicewicz, Brian C.
    [J]. MACROMOLECULES, 2010, 43 (16) : 6706 - 6715
  • [22] Self-Phosphorylated Polybenzimidazole: An Environmentally Friendly and Economical Approach for Hydrogen/Air High-Temperature Polymer-Electrolyte Membrane Fuel Cells
    Ponomarev, Igor I.
    Razorenov, Dmitry Y.
    Skupov, Kirill M.
    Ponomarev, Ivan I.
    Volkova, Yulia A.
    Lyssenko, Konstantin A.
    Lysova, Anna A.
    Vtyurina, Elizaveta S.
    Buzin, Mikhail I.
    Klemenkova, Zinaida S.
    [J]. MEMBRANES, 2023, 13 (06)
  • [23] Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes
    Cleemann, L. N.
    Buazar, F.
    Li, Q.
    Jensen, J. O.
    Pan, C.
    Steenberg, T.
    Dai, S.
    Bjerrum, N. J.
    [J]. FUEL CELLS, 2013, 13 (05) : 822 - 831
  • [24] A review of radiation-grafted polymer electrolyte membranes for alkaline polymer electrolyte membrane fuel cells
    Zhou, Tianchi
    Shao, Rong
    Chen, Song
    He, Xuemei
    Qiao, Jinli
    Zhang, Jiujun
    [J]. JOURNAL OF POWER SOURCES, 2015, 293 : 946 - 975
  • [25] Membrane Electrode Assembly for High Temperature Polymer Electrolyte Membrane Fuel Cell Based on Phosphoric Acid-Doped Polybenzimidazole
    Yao, Dongmei
    Zhang, Weiqi
    Xu, Qian
    Xu, Li
    Li, Huaming
    Su, Huaneng
    [J]. PROGRESS IN CHEMISTRY, 2019, 31 (2-3) : 455 - 463
  • [26] Cyano crosslinked polybenzimidazole membranes containing 4,5-diazafluorene and pyridine for high temperature proton exchange membranes
    Ji, Jiaqi
    Wu, Hongchao
    Wang, Wenwen
    Li, Hong
    Li, Jie
    Zhang, Weiyu
    Li, Keda
    Pei, Qi
    Zhang, Xiangdong
    Zhang, Shujiang
    Li, Wei
    Gong, Chenliang
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 50 : 1584 - 1597
  • [27] Surfactant-assisted polymer electrolyte nanocomposite membranes for fuel cells
    Mulmi, Suresh
    Park, Chi Hoon
    Kim, Hong Keon
    Lee, Chang Hyun
    Park, Ho Bum
    Lee, Young Moo
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2009, 344 (1-2) : 288 - 296
  • [28] Fabrication of thermally cross-linked polybenzimidazole membranes using a di-azide cross-linker for high temperature proton exchange membrane fuel cells
    Kim, Hyejin
    Kim, Junghwan
    Kim, Jungha
    Lee, So Young
    Kim, Seongwoo
    Lee, Jong-Chan
    [J]. JOURNAL OF POWER SOURCES, 2024, 614
  • [29] Surface Properties of Pt and PtCo Electrocatalysts and Their Influence on the Performance and Degradation of High-Temperature Polymer Electrolyte Fuel Cells
    Arico, Antonino Salvatore
    Stassi, Alessandro
    Gatto, Irene
    Monforte, Giuseppe
    Passalacqua, Enza
    Antonucci, Vincenzo
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (37) : 15823 - 15836
  • [30] Phosphoric Acid Dynamics in High Temperature Polymer Electrolyte Membranes
    Aili, David
    Becker, Hans
    Reimer, Uwe
    Andreasen, Jens Wenzel
    Cleemann, Lars N.
    Jensen, Jens Oluf
    Pan, Chao
    Wang, Xingdong
    Lehnert, Werner
    Li, Qingfeng
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (13)