Performance Limit Projection of Germanane Field-Effect Transistors

被引:16
作者
AlMutairi, AbdulAziz [1 ]
Zhao, Yiju [1 ]
Yin, Demin [1 ]
Yoon, Youngki [1 ]
机构
[1] Univ Waterloo, Dept Elect & Comp Engn, Waterloo Inst Nanotechnol, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Germanane; field-effect transistor; quantum transport; non-equilibrium green's function; device simulation;
D O I
10.1109/LED.2017.2681579
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Here we explore the performance limit of monolayer germanane (GeH) field-effect transistors (FETs). We first plotted an electronic band structure of GeH using density functional theory and then tight-binding parameters were extracted. Device characteristics of GeH FETs are investigated using rigorous self-consistent atomistic quantum transport simulations within tight-binding approximations. Our simulation results indicate that GeH FETs can exhibit exceptional on-state device characteristics, such as high Ion (> 2 mA/mu m) and large gm (similar to 7 mS/mu m) with V-DD = 0.5 V due to the very light effective mass of GeH (0.07m(0)), while maintaining excellent switching characteristics (SS similar to 64 mV/dec). We have also performed a scaling study by varying the channel length, and it turned out that GeH FET can be scaled down to similar to 14- nm channel without facing significant short channel effects but it may suffer from large leakage current at the channel length shorter than 10 nm. Finally, we have benchmarked GeH FET against MoS2 counterpart, exhibiting better suitability of GeH device for high-performance applications compared with MoS2 transistors.
引用
收藏
页码:673 / 676
页数:4
相关论文
共 17 条
[1]   Nonvolatile Memory Cells Based on MoS2/Graphene Heterostructures [J].
Bertolazzi, Simone ;
Krasnozhon, Daria ;
Kis, Andras .
ACS NANO, 2013, 7 (04) :3246-3252
[2]   Stability and Exfoliation of Germanane: A Germanium Graphane Analogue [J].
Bianco, Elisabeth ;
Butler, Sheneve ;
Jiang, Shishi ;
Restrepo, Oscar D. ;
Windl, Wolfgang ;
Goldberger, Joshua E. .
ACS NANO, 2013, 7 (05) :4414-4421
[3]   Density functional theory calculations of defect energies using supercells [J].
Castleton, C. W. M. ;
Hoglund, A. ;
Mirbt, S. .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2009, 17 (08)
[4]  
Datta S., 2013, Quantum Transport: atom to Transistor
[5]   MoS2 transistors with 1-nanometer gate lengths [J].
Desai, Sujay B. ;
Madhvapathy, Surabhi R. ;
Sachid, Angada B. ;
Llinas, Juan Pablo ;
Wang, Qingxiao ;
Ahn, Geun Ho ;
Pitner, Gregory ;
Kim, Moon J. ;
Bokor, Jeffrey ;
Hu, Chenming ;
Wong, H. -S. Philip ;
Javey, Ali .
SCIENCE, 2016, 354 (6308) :99-102
[6]   Mobility and saturation velocity in graphene on SiO2 [J].
Dorgan, Vincent E. ;
Bae, Myung-Ho ;
Pop, Eric .
APPLIED PHYSICS LETTERS, 2010, 97 (08)
[7]   Germanane: a Low Effective Mass and High Bandgap 2-D Channel Material for Future FETs [J].
Ghosh, Ram Krishna ;
Brahma, Madhuchhanda ;
Mahapatra, Santanu .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (07) :2309-2315
[8]   Giant Photoamplification in Indirect-Bandgap Multilayer MoS2 Phototransistors with Local Bottom-Gate Structures [J].
Kwon, Junyeon ;
Hong, Young Ki ;
Han, Gyuchull ;
Omkaram, Inturu ;
Choi, Woong ;
Kim, Sunkook ;
Yoon, Youngki .
ADVANCED MATERIALS, 2015, 27 (13) :2224-+
[9]   Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides [J].
Liu, Gui-Bin ;
Shan, Wen-Yu ;
Yao, Yugui ;
Yao, Wang ;
Xiao, Di .
PHYSICAL REVIEW B, 2013, 88 (08)
[10]   Ballistic Transport Performance of Silicane and Germanane Transistors [J].
Low, Kain Lu ;
Huang, Wen ;
Yeo, Yee-Chia ;
Liang, Gengchiau .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (05) :1590-1598