Feast and Famine: regulation of black hole growth in low-redshift galaxies

被引:264
作者
Kauffmann, Guinevere [1 ]
Heckman, Timothy M. [2 ]
机构
[1] Max Planck Inst Astrophys, D-85748 Garching, Germany
[2] Johns Hopkins Univ, Ctr Astrophys Sci, Dept Phys & Astron, Baltimore, MD 21218 USA
关键词
galaxies: active; galaxies: bulges; galaxies: evolution; galaxies: nuclei; galaxies: stellar content; ACTIVE GALACTIC NUCLEI; DIGITAL-SKY-SURVEY; INITIAL MASS FUNCTION; STAR-FORMATION; STARBURST GALAXIES; HOST GALAXIES; COOLING FLOWS; POPULATION SYNTHESIS; EDDINGTON RATIOS; QUASAR LIFETIMES;
D O I
10.1111/j.1365-2966.2009.14960.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We analyse the observed distribution of Eddington ratios (L/L-Edd) as a function of supermassive black hole mass for a large sample of nearby galaxies drawn from the Sloan Digital Sky Survey. We demonstrate that there are two distinct regimes of black hole growth in nearby galaxies. The first is associated with galaxies with significant star formation [M-*/star formation rate (SFR) similar to a Hubble time] in their central kiloparsec regions, and is characterized by a broad lognormal distribution of accretion rates peaked at a few per cent of the Eddington limit. In this regime, the Eddington ratio distribution is independent of the mass of the black hole and shows little dependence on the central stellar population of the galaxy. The second regime is associated with galaxies with old central stellar populations (M-*/SFR a Hubble time), and is characterized by a power-law distribution function of Eddington ratios. In this regime, the time-averaged mass accretion rate on to black holes is proportional to the mass of stars in the galaxy bulge, with a constant of proportionality that depends on the mean stellar age of the stars. This result is once again independent of black hole mass. We show that both the slope of the power law and the decrease in the accretion rate on to black holes in old galaxies are consistent with population synthesis model predictions of the decline in stellar mass loss rates as a function of mean stellar age. Our results lead to a very simple picture of black hole growth in the local Universe. If the supply of cold gas in a galaxy bulge is plentiful, the black hole regulates its own growth at a rate that does not further depend on the properties of the interstellar medium. Once the gas runs out, black hole growth is regulated by the rate at which evolved stars lose their mass.
引用
收藏
页码:135 / 147
页数:13
相关论文
共 69 条
[1]   The Fourth Data Release of the Sloan Digital Sky Survey [J].
Adelman-McCarthy, JK ;
Agüeros, MA ;
Allam, SS ;
Anderson, KSJ ;
Anderson, SF ;
Annis, J ;
Bahcall, NA ;
Baldry, IK ;
Barentine, JC ;
Berlind, A ;
Bernardi, M ;
Blanton, MR ;
Boroski, WN ;
Brewington, HJ ;
Brinchmann, J ;
Brinkmann, J ;
Brunner, RJ ;
Budavári, T ;
Carey, LN ;
Carr, MA ;
Castander, FJ ;
Connolly, AJ ;
Csabai, I ;
Czarapata, PC ;
Dalcanton, JJ ;
Doi, M ;
Dong, F ;
Eisenstein, DJ ;
Evans, ML ;
Fan, XH ;
Finkbeiner, DP ;
Friedman, SD ;
Frieman, JA ;
Fukugita, M ;
Gillespie, B ;
Glazebrook, K ;
Gray, J ;
Grebel, EK ;
Gunn, JE ;
Gurbani, VK ;
de Haas, E ;
Hall, PB ;
Harris, FH ;
Harvanek, M ;
Hawley, SL ;
Hayes, J ;
Hendry, JS ;
Hennessy, GS ;
Hindsley, RB ;
Hirata, CM .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2006, 162 (01) :38-48
[2]   Quantifying the bimodal color-magnitude distribution of galaxies [J].
Baldry, IK ;
Glazebrook, K ;
Brinkmann, J ;
Ivezic, Z ;
Lupton, RH ;
Nichol, RC ;
Szalay, AS .
ASTROPHYSICAL JOURNAL, 2004, 600 (02) :681-694
[3]   CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRA-GALACTIC OBJECTS [J].
BALDWIN, JA ;
PHILLIPS, MM .
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 1981, 93 (551) :5-19
[4]   Differential galaxy evolution in cluster and field galaxies at z ≈ 0.3 [J].
Balogh, ML ;
Morris, SL ;
Yee, HKC ;
Carlberg, RG ;
Ellingson, E .
ASTROPHYSICAL JOURNAL, 1999, 527 (01) :54-79
[5]   FUELING STARBURST GALAXIES WITH GAS-RICH MERGERS [J].
BARNES, JE ;
HERNQUIST, LE .
ASTROPHYSICAL JOURNAL, 1991, 370 (02) :L65-+
[6]   Transformations of galaxies .2. Gasdynamics in merging disk galaxies [J].
Barnes, JE ;
Hernquist, L .
ASTROPHYSICAL JOURNAL, 1996, 471 (01) :115-142
[7]   COMPTON HEATED WINDS AND CORONAE ABOVE ACCRETION DISKS .1. DYNAMICS [J].
BEGELMAN, MC ;
MCKEE, CF ;
SHIELDS, GA .
ASTROPHYSICAL JOURNAL, 1983, 271 (01) :70-88
[8]  
Best PN, 2007, MON NOT R ASTRON SOC, V379, P894, DOI 10.1111/J.1365-2966.2007.11937.x
[9]   A sample of radio-loud active galactic nuclei in the Sloan Digital Sky Survey [J].
Best, PN ;
Kauffmann, G ;
Heckman, TM ;
Ivezic, Z .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2005, 362 (01) :9-24
[10]   The physical properties of star-forming galaxies in the low-redshift Universe [J].
Brinchmann, J ;
Charlot, S ;
White, SDM ;
Tremonti, C ;
Kauffmann, G ;
Heckman, T ;
Brinkmann, J .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2004, 351 (04) :1151-1179