Control Over Ligand Exchange Reactivity in Hole Transport Layer Enables High-Efficiency Colloidal Quantum Dot Solar Cells

被引:46
作者
Biondi, Margherita [1 ]
Choi, Min-Jae [1 ]
Lee, Seungjin [1 ]
Bertens, Koen [1 ]
Wei, Mingyang [1 ]
Kirmani, Ahmad R. [2 ]
Lee, Geonhui [1 ]
Kung, Hao Ting [3 ]
Richter, Lee J. [2 ]
Hoogland, Sjoerd [1 ]
Lu, Zheng-Hong [3 ]
de Arquer, F. Pelayo Garcia [1 ]
Sargent, Edward H. [1 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
[2] Natl Inst Stand & Technol NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA
[3] Univ Toronto, Dept Mat Sci & Engn, Toronto, ON M5S 3E4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
CIRCUIT VOLTAGE DEFICIT; NANOCRYSTALS; PROSPECTS; PBSE;
D O I
10.1021/acsenergylett.0c02500
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Colloidal quantum dot (CQD) solar cells are solution-processed photovoltaic devices that exhibit promise in harvesting the infrared solar spectrum. Solid-state ligand exchange is the method employed to fabricate the CQD hole transport layer (HTL) in these cells: insulating oleic acid ligands are substituted with short thiol ligands (1,2-ethanedithiol) to create conductive p-type CQD solids. Thiols' high reactivity with the CQD surface results in rapid exchange, giving rise to aggregates of dots and unpassivated sites on dots, each contributing to sub-bandgap trap states. Here we report a strategy to minimize trap states in the CQD HTL by controlling the solvent type in the exchange. By employing a less volatile solvent, we achieve a slower reaction, leading to increased order and a 2 times reduced trap density in CQD solids. These improvements enable a power conversion efficiency of 13.1 +/- 0.1% in CQD solar cells compared to control devices showing 12.4 +/- 0.1%.
引用
收藏
页码:468 / 476
页数:9
相关论文
共 53 条
[1]   Solid-state-ligand-exchange free quantum dot ink-based solar cells with an efficiency of 10.9% [J].
Aqoma, Havid ;
Jang, Sung-Yeon .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (06) :1603-1609
[2]   High-Efficiency Photovoltaic Devices using Trap-Controlled Quantum-Dot Ink prepared via Phase-Transfer Exchange [J].
Aqoma, Havid ;
Al Mubarok, Muhibullah ;
Hadmojo, Wisnu Tantyo ;
Lee, Eun-Hye ;
Kim, Tae-Wook ;
Ahn, Tae Kyu ;
Oh, Seung-Hwan ;
Jang, Sung-Yeon .
ADVANCED MATERIALS, 2017, 29 (19)
[3]   Ligand-Assisted Reconstruction of Colloidal Quantum Dots Decreases Trap State Density [J].
Bin Sun ;
Vafaie, Maral ;
Levina, Larissa ;
Wei, Mingyang ;
Dong, Yitong ;
Gao, Yajun ;
Kung, Hao Ting ;
Biondi, Margherita ;
Proppe, Andrew H. ;
Bin Chen ;
Choi, Min-Jae ;
Sagar, Laxmi Kishore ;
Voznyy, Oleksandr ;
Kelley, Shana O. ;
Laquai, Frederic ;
Lu, Zheng-Hong ;
Hoogland, Sjoerd ;
de Arguer, F. Pelayo Garcia ;
Sargent, Edward H. .
NANO LETTERS, 2020, 20 (05) :3694-3702
[4]   A Chemically Orthogonal Hole Transport Layer for Efficient Colloidal Quantum Dot Solar Cells [J].
Biondi, Margherita ;
Choi, Min-Jae ;
Ouellette, Olivier ;
Baek, Se-Woong ;
Todorovic, Petar ;
Sun, Bin ;
Lee, Seungjin ;
Wei, Mingyang ;
Li, Peicheng ;
Kirmani, Ahmad R. ;
Sagar, Laxmi K. ;
Richter, Lee J. ;
Hoogland, Sjoerd ;
Lu, Zheng-Hong ;
de Arquer, F. Pelayo ;
Sargent, Edward H. .
ADVANCED MATERIALS, 2020, 32 (17)
[5]   Low Driving Voltage and High Mobility Ambipolar Field-Effect Transistors with PbS Colloidal Nanocrystals [J].
Bisri, Satria Zulkarnaen ;
Piliego, Claudia ;
Yarema, Maksym ;
Heiss, Wolfgang ;
Loi, Maria Antonietta .
ADVANCED MATERIALS, 2013, 25 (31) :4309-4314
[6]   Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems [J].
Chen, Bin ;
Baek, Se-Woong ;
Hou, Yi ;
Aydin, Erkan ;
De Bastiani, Michele ;
Scheffel, Benjamin ;
Proppe, Andrew ;
Huang, Ziru ;
Wei, Mingyang ;
Wang, Ya-Kun ;
Jung, Eui-Hyuk ;
Allen, Thomas G. ;
Van Kerschaver, Emmanuel ;
de Arquer, F. Pelayo Garcia ;
Saidaminov, Makhsud, I ;
Hoogland, Sjoerd ;
De Wolf, Stefaan ;
Sargent, Edward H. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[7]   Charge Transport Modulation of a Flexible Quantum Dot Solar Cell Using a Piezoelectric Effect [J].
Cho, Yuljae ;
Giraud, Paul ;
Hou, Bo ;
Lee, Young-Woo ;
Hong, John ;
Lee, Sanghyo ;
Pak, Sangyeon ;
Lee, Juwon ;
Jang, Jae Eun ;
Morris, Stephen M. ;
Sohn, Jung Inn ;
Cha, SeungNam ;
Kim, Jong Min .
ADVANCED ENERGY MATERIALS, 2018, 8 (03)
[8]   Steric-Hindrance-Driven Shape Transition in PbS Quantum Dots: Understanding Size-Dependent Stability [J].
Choi, Hyekyoung ;
Ko, Jae-Hyeon ;
Kim, Yong-Hyun ;
Jeong, Sohee .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (14) :5278-5281
[9]   Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics [J].
Choi, Min-Jae ;
de Arquer, F. Pelayo Garcia ;
Proppe, Andrew H. ;
Seifitokaldani, Ali ;
Choi, Jongmin ;
Kim, Junghwan ;
Baek, Se-Woong ;
Liu, Mengxia ;
Sun, Bin ;
Biondi, Margherita ;
Scheffel, Benjamin ;
Walters, Grant ;
Nam, Dae-Hyun ;
Jo, Jea Woong ;
Ouellette, Olivier ;
Voznyy, Oleksandr ;
Hoogland, Sjoerd ;
Kelley, Shana O. ;
Jung, Yeon Sik ;
Sargent, Edward H. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[10]   Highly Asymmetric n+-p Heterojunction Quantum-Dot Solar Cells with Significantly Improved Charge-Collection Efficiencies [J].
Choi, Min-Jae ;
Kim, Sunchuel ;
Lim, Hunhee ;
Choi, Jaesuk ;
Sim, Dong Min ;
Yim, Soonmin ;
Ahn, Byung Tae ;
Kim, Jin Young ;
Jung, Yeon Sik .
ADVANCED MATERIALS, 2016, 28 (09) :1780-1787