On hyperfocused arcs in P G(2,q)

被引:9
作者
Giulietti, M. [1 ]
Montanucci, E. [1 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
关键词
desarguesian plane; arc; blocking set; 1-factorization; secret sharing scheme;
D O I
10.1016/j.disc.2006.06.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A k-arc in a Dearguesian projective plane whose secants meet some external line in k - 1 points is said to be hyperfocused. Hyperfocused arcs are investigated in connection with a secret sharing scheme based on geometry due to Simmons. In this paper it is shown that point orbits under suitable groups of elations are hyperfocused arcs with the significant property of being contained neither in a hyperoval nor in a proper subplane. Also, the concept of generalized hyperfocused arc, i.e. an arc whose secants admit a blocking set of minimum size, is introduced: a construction method is provided, together with the classification for size up to 10. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:3307 / 3314
页数:8
相关论文
共 11 条
[1]   Minimal covering of all chords of a conic in PG(2, q), q even [J].
Aguglia, A. ;
Korchmaros, G. ;
Siciliano, Alessandro .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2006, 12 (05) :651-655
[2]  
ANDERSEN LD, 1996, CRC DISCR MATH APPL, P653
[3]  
Beutelspacher A., 1993, Designs, Codes and Cryptography, V3, P127, DOI 10.1007/BF01388411
[4]  
Bichara A., 1982, ANN DISCRETE MATH, V14, P117
[5]  
Cherowitzo W.E., 2005, S STEVIN, V12, P685
[6]   Ovals and hyperovals in Desarguesian nets [J].
Drake, DA ;
Keating, K .
DESIGNS CODES AND CRYPTOGRAPHY, 2004, 31 (03) :195-212
[7]  
Hirschfeld J. W. P., 1998, PROJECTIVE GEOMETRIE
[8]  
HOLDER LD, 1997, THESIS U COLARDO DEN
[9]  
Segre B., 1955, CAN J MATH, V7, P414, DOI [10.4153/CJM-1955-045-x.h25i, DOI 10.4153/CJM-1955-045-X.H25I]
[10]  
Simmons G.J., 1989, C NUMERANTIUM, V73, P181