A Comprehensive Compact Model for GaN HEMTs, Including Quasi-Steady-State and Transient Trap-Charge Effects

被引:26
作者
Syamal, Binit [1 ,2 ]
Zhou, Xing [1 ]
Ben Chiah, Siau [1 ]
Jesudas, Anand M. [1 ]
Arulkumaran, Subramaniam [3 ]
Ng, Geok Ing [1 ,3 ]
机构
[1] Nanyang Technol Univ, NOVITAS, Nanoelect Ctr Excellence, Sch Elect & Elect Engn, Singapore 639798, Singapore
[2] GLOBALFOUNDRIES, Singapore 738406, Singapore
[3] Nanyang Technol Univ, Temasek Labs, Singapore 637553, Singapore
基金
新加坡国家研究基金会;
关键词
Compact model (CM); current collapse (CC); drain lag; gate lag; high electron-mobility transistors (HEMTs); interface traps; pulsed I-V; FIELD-EFFECT TRANSISTORS; ELECTRON-MOBILITY TRANSISTORS; CURRENT COLLAPSE; FREQUENCY-DEPENDENCE; ALGAN/GAN HEMTS; GAAS-MESFETS; DENSITY; SEMICONDUCTOR; GENERATION; DISPERSION;
D O I
10.1109/TED.2016.2533165
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A comprehensive scalable trap-charge model for the dc and pulsed I-V modeling of GaN high electron-mobility transistor is presented. While interface traps are considered for dc I-V modeling, surface states and traps in the AlGaN barrier and GaN buffer are considered for the pulsed I-V model. A surface-potential-based model is presented for interface traps, which is then adapted to the current model for the dc modeling. For the pulsed I-V modeling, a semiempirical approach is proposed for gate lag as well as both gate-lag and drain-lag conditions. The model is able to capture the effects of gate (V-gq) and drain (V-dq) quiescent biases as well as the stress time (T-OFF), and is validated with both numerical simulation and measurement data. Finally, for the accurate transient simulations in switching applications, the emission of electrons is also modeled in Verilog-A using an asymptotic solution of a differential equation, which can be a better alternative to that of the RC subcircuit approach.
引用
收藏
页码:1478 / 1485
页数:8
相关论文
共 34 条
  • [11] MODELING FREQUENCY-DEPENDENCE OF GAAS-MESFET CHARACTERISTICS
    CONGER, J
    PECZALSKI, A
    SHUR, MS
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1994, 29 (01) : 71 - 76
  • [12] FREQUENCY-DEPENDENT ELECTRICAL CHARACTERISTICS OF GAAS-MESFETS
    GOLIO, JM
    MILLER, MG
    MARACAS, GN
    JOHNSON, DA
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 1990, 37 (05) : 1217 - 1227
  • [13] GaN on Si Technologies for Power Switching Devices
    Ishida, Masahiro
    Ueda, Tetsuzo
    Tanaka, Tsuyoshi
    Ueda, Daisuke
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2013, 60 (10) : 3053 - 3059
  • [14] A Current-Transient Methodology for Trap Analysis for GaN High Electron Mobility Transistors
    Joh, Jungwoo
    del Alamo, Jesus A.
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2011, 58 (01) : 132 - 140
  • [15] Inverse temperature dependence of reverse gate leakage current in AlGaN/GaN HEMT
    Kaushik, J. K.
    Balakrishnan, V. R.
    Panwar, B. S.
    Muralidharan, R.
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2013, 28 (01)
  • [16] CURRENT-VOLTAGE CHARACTERISTIC COLLAPSE IN ALGAN/GAN HETEROSTRUCTURE INSULATED GATE FIELD-EFFECT TRANSISTORS AT HIGH DRAIN BIAS
    KHAN, MA
    SHUR, MS
    CHEN, QC
    KUZNIA, JN
    [J]. ELECTRONICS LETTERS, 1994, 30 (25) : 2175 - 2176
  • [17] A Physics-Based Analytical Model for 2DEG Charge Density in AlGaN/GaN HEMT Devices
    Khandelwal, Sourabh
    Goyal, Nitin
    Fjeldly, Tor A.
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2011, 58 (10) : 3622 - 3625
  • [18] Observation of deep traps responsible for current collapse in GaN metal-semiconductor field-effect transistors
    Klein, PB
    Freitas, JA
    Binari, SC
    Wickenden, AE
    [J]. APPLIED PHYSICS LETTERS, 1999, 75 (25) : 4016 - 4018
  • [19] Large signal frequency dispersion of AlGaN GaN heterostructure field effect transistors
    Kohn, E
    Daumiller, I
    Schmid, P
    Nguyen, NX
    Nguyen, CN
    [J]. ELECTRONICS LETTERS, 1999, 35 (12) : 1022 - 1024
  • [20] Compact model of current collapse in heterostructure field-effect transistors
    Koudymov, A.
    Shur, M. S.
    Simin, G.
    [J]. IEEE ELECTRON DEVICE LETTERS, 2007, 28 (05) : 332 - 335